Total Electron Content (TEC) Variations and Correlation with Seismic Activity over Japan

Authors:  Joseph A. Hammerstrom, Pierre-Richard J. Cornely

Earthquakes are extremely dangerous physical phenomena. The ability to properly forecast them would go a long way in reducing the damage they cause. One earthquake forecasting method being researched uses the ionospheric Total Electron Content (TEC). Our investigation used TEC data from 2011 during certain days near and on the date of the earthquake off the coast of Tōhoku, Japan. We took advantage of the large amounts of GPS records obtained by the GPS Earth Observation Network (GEONET) of Japan which contained the TEC data needed. This data was used to visualize the TEC over the course of the day of the Tōhoku earthquake.

Chemical Reduction and Deposition of Nanostructured Pt–Au Alloy

Author:  Marvin X. C. Seow

Nanostructured metal alloys made up of Pt and another metal are more efficient in catalysing reactions than pure Pt nanoparticles. However, few studies have investigated low heat, solvent-free chemical deposition techniques of nanostructured metal alloys. This paper investigates the deposition of Pt–Au nanostructured metal alloy on fluorine-doped tin oxide glass via the low heat, solvent-free polyol reduction and the effect of Pt:Au mass loading ratio on the catalytic performance.

Probability Current and a Simulation of Particle Separation

Authors:  Felix B. A. Tellander, Johan E. M. Ulander, Irina I. Yakimenko, Karl-Fredrik Berggren

The structure of scattered wave fields and currents is of interest in a variety of fields within physics such as quantum mechanics and optics. Traditionally two-dimensional structures have been investigated; here we focus on three-dimensional structures. We make a generic study of three dimensional quantum box cavities, and our main objective is to visualize the probability current.