Research

Brain Tumor Segmentation Using Morphological Processing and the Discrete Wavelet Transform

Brain Tumor Segmentation Using Morphological Processing and the Discrete Wavelet Transform

Medical imaging is key for the successful diagnosis and treatment of brain tumors, but the initial detection of tumors is, by nature, difficult. Image segmentation, a technique often used to aid detection, is highly dependent on the resolution of the segmented image. Many common morphological segmentation methods often suffer from a lack of resolution which hinders tumor detection. Thus, in this paper, two tumor segmentation techniques are developed and compared using MATLAB – one based on morphological processing, and a second which combines the discrete wavelet transform with morphological processing. Both proposed approaches begin with skull stripping via binary erosion, followed by image contrast enhancement and histogram thresholding.

Strain Specific: Microbial Strains Involved in Gut-Brain Signaling

Exploration into the microbial role within behavior and neurologic regulation has been an area of growing interest and research. While in-vitro and in-vivo experimentation has suggested that commensal microbiota play a role within behavioral and neurologic functioning, little distinction has been made about the specific microbes inducing change. In order to understand and potentially utilize this complex gut-microbe-brain connection, it is imperative to distinguish between which microbes are inducing behavioral and or neurologic effects, and which biologic mechanisms are mediating said effects. To enhance the current understanding of neurologically influential microbes, this review will analyze eight microbial strains belonging to the genus types Lactobacillus and Bifidobacterium, and note the similarities and dissimilarities pertaining to modulation of inflammatory response, intestinal permeability, neurochemical concentrations, and interaction with the vagus nerve expressed amongst included microbial strains.