Research

AIRE Deficiency Exposes Inefficiencies of Peripheral Tolerance Leading to Variable APECED Phenotypes

AIRE Deficiency Exposes Inefficiencies of Peripheral Tolerance Leading to Variable APECED Phenotypes

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare, recessive disease caused by mutations in the autoimmune regulator (AIRE) gene. A loss of function at the AIRE locus is widely known to induce autoimmune activation against host tissues due to lack of central tolerance during thymic T cell development. Failure to delete autoreactive T cell clones allows their release into the periphery, where they may proliferate and initiate an autoimmune response.By investigating the multiple ways AIRE function can be compromised, recent research has uncovered the steadfast mechanisms explaining how AIRE is expressed in mTECs, how AIRE transactivates tissue-specific antigens (TSAs), and how those TSAs are presented to T cells by both medullary thymic epithelial cells (mTECs) and bone marrow-derived antigen-presenting cells.

Exploring Carry-Over Effects to Elucidate Attention Bias Modification’s Mixed Results

Author:  Mackenna Hill, Elizabeth Duval

Attention bias modification (ABM) has been shown to decrease self-reported symptom severity for those with social anxiety disorder (SAD). ABM may also decrease attention bias towards threat present in SAD. Currently, the most prominent form of ABM is a modified dot-probe paradigm that uses two affective/emotional faces to measure or train attention bias. Results are mixed in previous studies regarding the ability of ABM to alter attention bias. 

Mutational Analysis of Transcriptional Initiation in Bacteria

Author:  Anthony J. Eckdahl and Todd J. Eckdahl

Gene expression in bacteria begins with transcription, the process by which the base sequence of DNA is copied into RNA. Promoters contain the DNA structural and chemical information for the initiation of transcription by RNA polymerase. Many bacterial promoters have conserved DNA sequences for this purpose called the -35 region and the -10 region. We used a new system for promoter research called pClone Red to carry out mutational analysis of the -35 region of a high strength promoter.