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Once the players are dealt their two cards, two players 
are required to place bets, called the small blind and big blind 
bets. The big blind is always twice the amount of the small 
blind. Both blinds rotate around the table to different players 
after each hand to ensure all players will eventually be place 
a small and big blind. Once the big blind bets, a round of bet-
ting begins: players must either (1) call meaning they bet an 
equal number of chips as the player before them, (2) raise 
meaning they bet more chips then the player before them, 
(3) fold meaning they do not bet any chips and forfeit out of 
the hand, they also lose any chips they have bet in the hand, 
or (4) check meaning they defer the decision to call, bet, or 
fold, a decision must be made eventually. A round of betting 
is complete once every player calls, and no player desires to 
raise. Note that for the small blind to continue playing must 
also call or raise the big blind (or subsequent raises of the 
big blind); if they fold, then they lose the small blind they 
were forced to bet in the beginning. After this round of bet-
ting is complete, three community cards are placed face up 
on the table and similar rounds of betting proceed. After the 
rounds of betting are complete, the player with the best five 
card hand then wins the pot, which is the accumulation of 
all chips bet from the beginning of the hand. The best five 
card hand (two personal cards and three community cards) 
is determined by the usual poker rules.

NLTH Tournament Rules
In a NLTH tournament, many (sometimes over a thousand) 
players at different tables of nine each start with the same 
amount of chips and continuously play hands until they ei-
ther run out or are the last player remaining, in which case 
they win the tournament and accept a cash prize. To facili-
tate betting and hasten the game, blind bets increase after a
certain period of time. The period of time in which the blinds 
are a fixed amount is called a level, when the time period 
is over the players move into a new level and the blinds in-
crease. In the beginning of the tournament, after a certain 
number of levels, an ante bet is introduced The ante bet re-

INTRODUCTION
The game of poker is exciting for many and offers the po-
tential for monetary gain. Nonetheless, the risk of losing 
large quantities of money deters many from taking part in 
the game. To mitigate risk, we analyze and model minimal 
risk strategies.

In this section, we first describe the rules of No-Limit 
Texas Hold’em (NLTH) and its implications in a tournament 
setting. Then we define risk and conservative play, and char-
acterize the Zero Risk strategy.

After defining the Zero Risk strategy, we formulate the 
linear programs which provide a guideline for a player at-
tempting to minimize risk. We then take a more theoretical 
approach and use various metrics to measure components 
of risk: aggressiveness, C1 norms, and total variation.

The Rules of NLTH
No-Limit Texas Hold’em poker is an n player (2 ≤ n ≤ 10) 
game of incomplete information, that uses the standard 52 
card playing deck. At the beginning of a hand, each player is 
dealt two cards. Player only have knowledge of cards dealt 
to them.

Minimal Risk Betting Analysis in Poker 
Tournaments
Uttam Bhetuwal1*, Angel Chavez1, Isaac Dobes1

This paper focuses on minimal risk strategies for tournament style No-Limit Texas Hold’em. In order to obtain the most 
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a favorable outcome is obtained. We also model strategies by constructing stack functions, which map a strategy to its ex-
pected outcome. We prove various properties of stack functions, which provide evidence in support of the conjecture that 
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quires that all players bet a specified number of chips at the 
beginning of every hand; the blind bets still apply. The ante 
bets never decrease after a level, and like the blind bets, can 
and often increases after a level.

Risk and Conservative Strategies
Definition 1
Risk per hand is defined as the probability of losing the 
hand multiplied by the value bet in the hand. For a given 
hand i, the risk of hand i is denoted by r(i).

Remark: The blind and ante amounts are not accounted 
for in this definition of risk; since they are mandatory bets 
they are considered sunk costs.
Definition 2
A strategy is a sequence of decisions allowable to a player 
in the game. The overall risk of a strategy is the expected 
value of the risk of the strategy, given by

where N denotes the total number of hands played in the 
duration of the strategy.
Definition 3
A conservative strategy is a strategy which attempts to 
minimize risk.
The Zero Risk Strategy
In the Zero Risk strategy, a player checks when
possible, and folds otherwise. The only time a player bets 
chips is when they are a blind, or if an ante bet is required by 
all players. Since blind and ante bets are sunk costs, in this
strategy, a player voluntarily bets exactly 0 chips, incurring a 
risk of 0 for every hand; hence the name.

THE LOSS FUNCTION
In this section, we derive the loss function, which calculates 
how many chips a player will have at the end of a level, n, 
utilizing the Zero Risk strategy.

First Order Linear Difference Equations
To derive the loss function, we use the following theorem. 
The proof of the theorem can be found in Jensen (2011).
Theorem 4
Let an and dn, n ϵ N0, be real valued sequences. Then the 
linear first order difference equation

with initial value y0 ϵ R has the unique solution

Derivation of Loss Function
Since we assume that we lose every hand we bet and we 
only bet the required amount via blind and ante, we can use 
the following recursive equation to find the number of chips 
left at the end of level n:

where h is the number of hands played in a level (this is as-
sumed to be a constant), an is the ante amount in level n, sn 
is the small blind amount in level n (note that for any level 
n, the big blind amount in level n is twice the small blind 
amount in level n), f sn  is the small blind frequency in level n 
(that is, how many times we are the small blind), and f  bn   is the 
big blind frequency in level n (that is, how many times we are 
the big blind). The terms on the right hand side of the equa-
tion, excluding yn−1, make up the term cn−1 in the recursive 
function in Theorem 4.

Applying Theorem 4, we have the formula:

where ck = h · ak + f sk   · sk + 2 · f bk   · sk. Note that this formula 
calculates the amount of chips left at the end of level n by 
subtracting the cost of the n levels from the initial amount of 
chips a player begins with.

Position and Blind Frequency
Definition 5
For any n ϵ N, φn := initial position in level n with respect to 
the small blind.

That is, if a player has φn = 0, this means that they start 
level n as the small blind; if a player has φn = k, k ϵ [1, . . . , 8], 
then they are k hands dealt away from being the small blind.

Remark: If a player is currently the small blind, then they 
will be the big blind in the next hand. The player who is the 
big blind is now 8 hands away from being the small blind 
again.
Proposition 6
φn = φ1 − (n − 1)r (mod 9)

Proof: To prove the proposition, we use induction on the 
level n.

Base Case (n = 1): φ1 = φ1 − (1 − 1) · r (mod 9).
Induction Hypothesis: Suppose that for k ϵ Z, φk = φ1 − 

(k − 1)r (mod 9).
Induction Step: When n = k + 1,

φ1 − kr (mod 9) = φ1 − [(k − 1) + 1]r (mod 9)
= φ1 − (k − 1)r + r (mod 9)
= φk + r (mod 9), by the induction hypothesis
= φk +1 (mod 9)
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By division algorithm h = 9q + r, for some q, r ϵ Z with 0 ≤ r ≤ 
9. This indicates that position, from one level to the next, is 
solely determined by the remainder.
Proposition 7
Let r = h (mod 9), φ1 be a player’s initial position at the begin-
ning of the tournament, and φn be the player’s initial position 
at the beginning of level n. Then the following are true:

1. if φn < r, then f sn   = [h/9], otherwise f sn   = [h/9]
2. if φn < 8 + r (mod 9) or φn = 8, then f  bn   = [h/9]

Proof:
1. Consider the case where 9 is a divisor of h. Then 

there exists k ϵ N such that h = 9k which implies that r = 0. 
It is clear that each player is the small blind k =h/9 = [h/9] = 
[h/9] many times.

If 9 is not a divisor of h, then by the division algorithm, h 
= 9k + r, 0 < r < 9. 9k hands are played and thus every player 
is the small blind k times. After the 9kth hand, r hands remain 
to be played. The player with φn = 0 and the players with φn 
≤ r − 1 will have the opportunity to be the small blind once 
more; they are the small blind k + 1, or equivalently [h/9], 
many times. Players with φn > r − 1 will not be able to play as 
the small blind again in the level; they are the small blind a 
total of k or [h/9] times.

2. Consider the case where 9 is a divisor of h. Then 
there exists k ϵ N such that h = 9k, which implies that r = 
0. Therefore every player will play each position (including 
position 8) exactly k = h/9 = [h/9] = [h/9] times.

If 9 is not a divisor of h, then by the division algorithm, 
let h = 9k + r, 0 < r < 8. 9k hands are played and thus every 
player is the big blind k times. After the 9kth hand, r hands 
remain to be played. The player who started as position 8 
will be the big blind again after 9k hands, so the player with 
φn = 8 will be the big blind k + 1 or [h/9] times. Now there are 
r − 1 remaining hands to be played in the level. For players 
that started with initial positions r − 1 or fewer hands away 
from the big blind, they will also be the big blind k + 1 or 
[h/9] times. By definition of position, these are players with 
initial position φn < r − 1 = 8 + r (mod 9). All of the other play-
ers won’t have the chance to become big blind again.As a 
result,they only get to be big blind k = [h/9] times.

Since the number of hands per level, h, is a constant, in 
conjunction with Proposition 7, the only input for the function 
required by the user is the betting structure, which in prac-
tice will be known to the player prior to entering the tourna-
ment. Therefore, if a player is utilizing the Zero Risk strategy 
in a tournament, they can use our function to determine how 
long they will last in the tournament.

INTEGER LINEAR PROGRAM (ILP)
While minimizing risk to zero may sound optimal, this notion 

is refuted in practice. In reality, a player utilizing the Zero 
Risk Strategy will often last only a few levels (about 5-7 us-
ing the World Series of Poker betting structure). This is why 
it is necessary to introduce risk and voluntary betting. None-
theless, a player may still want to minimize risk subject to 
the following constraint: survive to the level n with at least A 
chips, n, A ϵ N. We refer to such a constraint as a survival 
constraint. We have tried and tested different iterations of 
ILP to get a minimal risk betting strategy.

Minimum Hand ILP
To satisfy the survival constraint, one method we have de-
veloped is to minimize the number of hands played in a tour-
nament. Let wi be the number of hands a player wins in level 
i, vi be the minimum value of winning a hand in level i (vi = 
9 · ai + 3 · si , as each player is required to bet the ante and 
the big blind is twice the small blind), and li be the 8 amount 
of chips lost in a hand in level i:

For programming purposes, we approximate li to be ai +
1/3si . We therefore formulate the Minimum Hand ILP as fol-
lows:

Note that the survival constraint for this LP is given in 
lines 2 and 3. In subsequent linear programs, the LP’s sur-
vival constraint to these two lines. Also, the vector w ϵ Zn 

consisting of the components wi, 1 ≤ i ≤ n, is a solution vector 
if it satisfies the survival constraints.

Issues with the Minimum Hand ILP
Due to the betting structure of tournaments, winning a hand 
in a later level results in a greater payoff than winning a 
hand in an earlier level. Therefore, to minimize the required 
number of hands won in n levels subject to the survival con-
straint, the above ILP will dictate that a player wins most 
of the hands in the latter levels, clustering these hands in 
"close" proximity. This is problematic because playing with 
greater frequency gives more information to other play-
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ers. This decreases the players’ probability of winning the 
hand, thus increases the overall risk. Furthermore, requiring 
a player to play hands in close proximity limits what hands 
the player can choose to play, potentially forcing the player 
to play worse hands, thereby reducing their probability of 
winning the hand, which increases risk. Since the Minimum 
Hand ILP clusters the required hands won in later levels and 
does not require the player to win hands in earlier levels, the 
player is in a later level and forced to win all hands played. 
They may not have enough chips to bet and call opponents, 
making it difficult if not impossible to satisfy the survival con-
straints.

Uniformly Distributed ILP
To prevent clustering of required hands won, we develop 
another integer linear program which determines the small-
est number of required hands won for a level w*, so that if 
exactly w* hands are won each level, then a player would 
satisfy the survival constraints. We call the value w*/h the 
minimum ratio, since it is the ratio of the smallest number of 
required hands won per level to the number of hands dealt 
in a level. We formulate below what we refer to as the Uni-
formly Distributed Linear Program (UDLP), which we claim 
(and later prove) solves the problem of finding w*.

Minimum Ratio Proposition
Since wi = w1 for all i ϵ [n], this LP has the corresponding 
solution vector w ϵ Zn with each component having the same 
value.
Proposition 8
Given the survival constraints for n levels in a tournament, 
the UDLP returns w*.

Proof: Suppose the UDLP has the corresponding solu-
tion vector w ϵ Zn, where each component has the value w1 
ϵ Z. Assume for the sake of contradiction that there exists a 
solution vector v ϵ Zn, such that  max1≤i≤n vi < w1. Let ṽ ϵ Zn 
be the vector with every 1≤i≤n component having the value 
max1≤i≤n vi. This satisfies all of the constraints in the UDLP, 
which contradicts the objective of the UDLP, since w1 is not 
minimal.

Minimum Ratio ILP
Let the corresponding solution vector to the UDLP be w ϵ Zn, 

with each component having the value w*. There may exist a 
solution vector satisfying the survival constraints and having 
maximum (component-wise) value w*, while having other 
components with smaller values. Below we formulate an in-
teger linear program whose solution corresponds to the so-
lution vector consisting of the smallest of such components.

Notice the similarities between the Minimum Ratio ILP 
and the Minimum Hand ILP. Because of the objective of the 
LP and the constraint wi ≤ w* for all i, we reduce clustering 
in latter levels, which is the primary defect of the minimum 
hand LP. Furthermore, since the Minimum Ratio ILP has an 
upper bound on the number of hands a player can win in a 
level, it requires that the player win hands in earlier levels, 
which prevents the player’s chips stack from falling too close 
to zero. This ensures that the player will have sufficient chips 
to place bets in latter levels.
Example
To illustrate the deficiencies of the Minimum Hand ILP and 
the superiority of the Minimum Ratio ILP, we ran an example. 
We attempted to use realistic numbers in our example, with 
an initial chip amount of yo = 25000 and a desired ending 
chip amount of A = 100000. We wanted to last 8 levels with 
63 hands per level. The betting structure of this example is 
as follows: antes are ai = 0 if i ≤ 3 else 25 · 2i−2, blinds are si 
= 10 · 2i−2. With this information we ran the Minimum Hand 
ILP which returned

w1 w2 w3 w4 w5 w6 w7 w8

0 0 0 0 1 6 7 11

Table 1. A solution to Minimum Hand ILP.

Running the UDLP gave w* = 15. We then ran the Mini-
mum Ratio ILP, which returned

w1 w2 w3 w4 w5 w6 w7 w8

0 0 0 0 2 9 9 9

Table 2. A solution to Minimum Ratio ILP.

Notice that there is a greater clustering of hands in the 
later levels in the Minimum Hand ILP. Even though the Mini-
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mum Ratio ILP requires that we win more hands, since these 
12 hands are more evenly distributed throughout all levels, 
we do not risk having our chip stack falling too close to zero 
and not being able to survive later levels.

Consider the chip stack of a player following the Mini-
mum Hand ILP strategy it is straight forward to show the chip 
stack at the end of the levels is (0, 25000), (1, 24811), (2, 
24370), (3, 23551), (4, 15550), (5, 2144), (6, 605), (7, 7717), 
and (8, 102953). We can graph this data.

Figure 1. 

Consider the chip stack of a player following the Mini-
mum Hand ILP strategy. It is straight forward to show the 
chip stack at the end of the levels is (0, 25000), (1, 24811), 
(2, 24370), (3, 23551), (4, 15550), (5, 4677), (6, 18339), (7, 
45717), and (8, 100419). We can graph this data.

Figure 2. 

STACK FUNCTIONS
Recall that a strategy is a sequence of decisions. Here, a 
strategy is defined on the number of hands, nh, in a tourna-
ment (there are h hands per level, and n levels). Therefore, 
a strategy is a sequence of betting decisions per hand. At 
each hand, the outcome of the hand is a random variable 
X: Ω → Z defined by ω |→ α, where ω ϵ Ω is a point in 
the sample space of possible betting amounts, and α is the 
amount a player hasleft at the end of the hand. The outcome 
of a strategy is the stochastic process {Xt: t ϵ [nh]}; that is, the 
outcome of the strategy is the sequence of random variables 
mapping the outcome of a given hand to a chip amount. The 
expected outcome of a strategy S, E(S) is the sequence 
{E(Xt) : t ϵ [nh]}, where E is the expected value operator. The 
discrete stack function maps a strategy to its expected 
outcome. Hence, a discrete stack function will return a set of 
nh points corresponding to expected chip amounts at given 
hands based on the decisions made in the strategy.

Polynomial Interpolation
Given a discrete stack function S defined on n levels (and 
therefore nh hands), we use Lagrange Interpolation to con-
struct a smooth curve that best fits the outputs of the dis-
crete function.
Theorem 9
MAT 772 (2011); Mayers and Suli (2003) Let x0, x1, ..., xn be 
n + 1 distinct numbers, and let f(x) be a function defined on 
a domain containing these numbers. Then the polynomial 
defined by

is the unique polynomial of degree n that satisfies pn(xj) = 
f(xj), j = 0, 1, ..., n, where

The polynomial pn(x) is called the interpolating polynomial 
of f(x).

Given a strategy S with the corresponding discrete stack 
function S1, we construct the strategy’s continuous stack 
function S2 by applying the above theorem. As we consider 
hand 0 to be the beginning of the tournament where every 
player has y0 many chips, we define f(x) on [0, . . . , nh] and 
f(x) = S1. Since continuous stack functions are polynomials, 
they are continuously differentiable on their domain [0, nh] c_ 
R. The function space C1([0, nh]) is the set of all continu-
ously differentiable functions defined on [0, nh] c_     R. Hence it 
contains all continuous stack functions under consideration.
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Aggressiveness
Definition 10
Tao (2008) The function space C1([0, nh]) is equipped with 
the C1 norm

||f||C1∞([0,nh]) := ||f||L∞([0,nh]) + ||f'||L∞([0,nh])

where ||f||L∞([0,nh]) := sup{|f(x)| : x ϵ [0, nh]} is the supremum 
norm.

The norm measures the magnitude of a stack func-
tion and the magnitude of its derivative. The magnitude of 
a stack function’s derivative is called the aggressiveness 
of a stack function. It measures the maximum magnitude of 
chips a player bet and won or bet and lost in a tournament.
Theorem 11
The stack function characterized by the line segment y0A 
is the continuous stack function which minimizes aggres-
siveness among all stack functions satisfying the survival 
constraints. We make the assumption that such this stack 
function exists since we are trying to determine the ideal, not 
necessarily practical, minimal risk strategy.

Proof: Let S be a stack function which exactly meets the 
survival constraints. Let yoA be the line segment connecting 
yo to A. By the Mean Value Theorem, there exists z in the
domain of S such that S'(z) = A−yo / n−0. If S(z) ϵ/  yoA, then 
there exists ε > 0 such that

Hence, maxx ϵ dom(S) {|S'(x)|} > | A−yo / n−0 |. Therefore, y0A 
minimizes aggressiveness among all possible strategies 
which exactly meet the survival constraints.
Corollary 12
The stack function characterized by the line segment y0A is 
the continuous stack function which minimizes the C1 norm 
of all stack functions which exactly meet the survival con-
straints.

The corollary follows immediately from the theorem 
since all stack functions exactly meeting the survival con-
straints must contain the endpoints (0, y0) and (nh, A), which 
are the maximum and minimum values of the line segment 
y0A respectively.

Total Variation
While aggressiveness is a decent metric for analyzing a 
player’s most ambitious period during the game, the overall 
betting pattern is not accounted for as it only measures the 
maximum magnitude of the derivative at a single point. To 
get a better picture of the player’s strategy, we introduce the 

total variation function that measure a player’s overall
betting pattern.
Definition 13
Let f be a differentiable function defined on the interval [a, b]. 
The total variation of f from a to b is given by

We interpret the total variation as a measure of the over-
all amount bet in a strategy. While it does not explicitly give 
the betting amount, it provides a metric for comparing stack 
functions. Some nice properties of total variation are Vb

a (f) 
= Vb

a (−f) and Vb
a (f) = Vb

a (f + c) for any function f and any 
constant c ϵ R. We use V(f) to denote the total variation of f 
on the domain of f.
Theorem 14
Let A = (xa, ya), B = (xb, yb) ϵ R2 with xa < xb. Let AB be the line 
segment connecting A to B. Let f be a differentiable function 
defined on [xa, xb] with f(xa) = ya and f(xb) = yb. Then

V(f) ≥ V(AB).

Proof: Case 1: ya ≤ yb. We first calculate V(AB). Since |AB'| = 
yb−ya / xb−xa then V(AB) = yb − ya. We now bound V(f)

Case 2: ya > yb. We reflect AB and f on the y = ya line. The 
reflection of f is f 

r(x) = 2ya − f(x), and the reflection of AB is 
ABr(x) = 2ya − AB(x). Similarly, |(ABr)'| = ya−yb  / xb−xa, which 
implies that V(ABr) = ya − yb.
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By properties of total variation, V(AB) = V(ABr) and V(f) = 
V(fr), which implies that V(AB) ≤ V(f).
Corollary 15
The stack function characterized by the line segment yoA 
minimizes total variation of all stack function exactly meeting 
the survival constraints.

Connection to Risk
Given a stack function P, increasing the aggressiveness of P 
increases the risk of P since the value bet is greater. The C1 
norm contains the aggressiveness and the magnitude of the 
stack function. The greater the magnitude of a stack func-
tion, the more chips are bet and won or bet and lost to get to 
that critical point, which implies that a stack function P with 
greater C1 norm incurs greater risk. Similarly, if P has greater 
total variation, P acquires greater risk as more chips were 
bet. Since the stack function corresponding to the line seg-
ment y0A minimizes aggressiveness, the C1 norm, and total 
variation, we have the following conjecture:
Conjecture 16
The strategy corresponding to the stack function character-
ized by the line segment y0A minimizes risk.

CONCLUSION
We started this paper with concrete and practical results. 
However, these results not ideal the Zero Risk strategy mini-
mizes risk, but it is not a feasible long term strategy. The 
linear programs provide a criterion for conservatively play, 
that is too survive longer in a tournament but not necessarily 
end with more chips. The linear programs do not completely 
minimize risk, and do not provide any insight on how to win. 
Since the concrete results were not ideal, we analyzed bet-
ting patterns in a more abstract setting by approximating 
the expected outcomes of strategies with continuous stack 
functions. While this analysis is not as concrete and not fully 
concluded, it is promising. Since strategies are finite se-
quences and there are only finitely many decisions a player 
can make, it is theoretically possible to iterate through all 
possible strategies and find the expected outcome of each 
strategy. If our conjecture is correct, then the strategy which 
best fits the line segment y0A would be the optimal minimal 
risk strategy.
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