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where m is the mass of a particle which moves under the influence 
of a real potential V(r) (ℏ is the reduced Planck constant h/2π). 
When V(r) does not depend on time t the eigenvalues En of the 
Hermitian Hamiltonian H are the energy levels of a system.
(d) The time evolution of the wave function is given by the time-
dependent Schrödinger equation

Introduction
In 1926, Erwin Schrödinger formulated his famous non-relativistic 
equation for matter waves. In this form quantum mechanics (QM) 
has since then remained a never-ending success. It expands the 
classical Newtonian mechanics for particle orbitals into the world 
of quantum matter as atoms, molecules, solid matter, micro- and 
nano-scale devices, etc., in which particles acquire wave proper-
ties. For this reason it is also referred to, particularly in the early 
years of the new theory, as wave mechanics (WM) with reference 
to common wave phenomena present in acoustics, electromagne-
tism, vibrational structures as membranes and drums, hydrody-
namics and more. The predictive power of QM is, as well known, 
overwhelming.

In short, traditional QM as above rests solidly on a number of 
postulates as (Schiff, 1968): 

(a) A physical system is represented by a wave function Φ(r,t)
which holds all information of a system;
(b) Physical observables, as for example momentum p, are repre-
sented by Hermitian operators meaning that associated eigenvalues 
are real numbers and equal possible outcomes of measurements;
(c) The operator representing energy, the sum of kinetic energy T
and potential energy V, is the usual Hamiltonian
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For the case above one then has

where ψn(r) is the n:th stationary solution Hψn=Enψn with real 
eigenvalue En.

In this review we will introduce an extension (PT-symmetry) 
to the well known Hermitian QM and describe its implications on 
QM as well as analogous classical systems. After reviewing the 
background and current state of the field we discuss some open 
problems and suggest further studies with the goal to inspire new 
and clever ideas. 

A New Paradigm: Non-Hermitian QM and Parity-Time (PT) 
Symmetry
Measurements in QM return the eigenvalues of observables; for 
example, a measurement of a particle’s energy yields an eigenval-
ue of the Hamiltonian. The important assumption of Hermitian op-
erators guarantees that eigenvalues are real and that QM is consis-
tent with measurements. However, more lately it has been argued 
that the requirement of Hermiticity may be too taxing. Can the 
energy levels be real also for a Hamiltonian that is complex, i.e., 
a non-Hermitian one? Under certain circumstances, the answer is 
yes. Bender and Boettcher (1998) showed how this happens when 
a system is symmetric under the combined PT operations of parity, 
or mirror symmetry, (P) and time-reversal (T). These symmetry 
operations translate to p→-p,r→-r for parity and p→-p,r→r,i→-i 
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for time reversal. Enforcing this symmetry implies for the potential 
to satisfy V(r)=V*(-r) and thus there is a balanced flow, i.e., gain 
versus loss is harmonized (Bender, 2005, 2007; Weigert, 2004).

To get an understanding of the role of the complex potential 
V(r)= VRe(r)+ iVIm(r) consider the simple case of a pair of nearby 
even and odd states that are localized, for example, to the inte-
rior of a closed cavity (Figure 1). Let the solutions for the “un-
perturbed” case VIm(r)=0 be E1 and E2. Under a parametric change 
such that VIm(r)≠0 the two levels will interact according to the 2×2  
matrix equation

where Vint is the interaction matrix element between the initial 
states 1 and 2, i.e., Vint= <1│VIm|2>=<2│VIm|1>; c1 and c2 are the 
mixing coefficients for the two states. The eigenvalues of the 
mixed states are

The modified eigenvalues are evidently real as long as energy 
gap between states 1 an 2 is larger than |2Vint|. There is a balance 
between gain and loss. However, as the gap becomes equal to 
abs(2Vint) on further parametric increase a profound change takes 
place. The eigenvalues coalesce into a common value referred to 
as an exceptional point (EP); beyond this point the eigenvalues 
become complex. Rewriting Eq. (6) as

Figure 1. Schematic picture of two-dimensional circular dots. (A) 
shows the case with two opposite ports with complex potentials VL(x) = 
VR

*(-x). The interior potential is real and may be set equal to zero. The 
potential in the exterior region may be set to infinity, i.e., wave functions 
are confined to the circular area and ports. The vertical line is the line 
of reflection. The two ports serve as source and drain. Because of PT-
symmetry, gain and loss can balance each other. (B) shows a dot with sev-
eral ports with the possibility of combining the corresponding potentials 
according to the different symmetry lines and PT invariance. The flow of 
particles between the ports may thus be monitored by flexible pairings of 
the potentials in the different sections, i.e., the system will act a bit like a 
switchboard. While retaining PT-symmetry, the imaginary part of the po-
tential may be chosen differently for the pairs giving rise to a more com-
plex two-dimensional landscape of EPs. Obviously we may also consider 
more ports than just four.

A Two-Dimensional Quantum Dot in Contact with an 
Environment
There is a rich variety of quantum dots fabricated from different 
materials for different purposes. They may be three- or two-
dimensional objects embedded in solid materials, colloidal 
nanocrystals, etc., with intriguing physics and vast applications. 
A common feature is, as already the name indicates, that states 
are confined within a dot are quantized because of its smallness, 
typically in the nanometer regime. Research, basic and applied, 
remains very dynamic and there is a rich literature with many good 
monographs, see for example (Klimov 2010) and more.

Here we will focus on a particular kind of quantum dots that 
may be created in layered semi-conductor hetero-structures like 
Ga1-xAlxAs/GaAs. Because of a mismatch between the band-gaps 
of the two materials and modulation doping with donor atoms 
there will be an effectively two-dimensional electron gas that 
resides at the interface. A smart step is to add metallic top layer/
gate which makes it possible to vary the density of electrons, even 
to deplete it. Another smart step is to use lithography to shape the 
electron gas into small structures like one-dimensional wires, dots 
of various geometries, combinations of such objects into networks, 
etc., as for example described by Ferry, Goodnick, & Bird (2009).

Here we present a schematic model of a circular two-
dimensional quantum dot embedded in a hetero-structure (Figure 

The time-dependent solutions in Eq. (2) are now

Beyond the exceptional point there may thus be either exponential 
decay or growth of the states.  The outline above is a rather el-
ementary one but points to the existence of EPs into which states, 
may coalesce on parametric change. If we consider the exponen-
tially decaying states, which would apply to fermions because of 
the Pauli principle that forbids double occupancy, one should thus 
have the possibility of switching a state on and off by playing with 
Vint.

In the next section we will discuss the specific example of a 
quantum in contact with an environment. There will be a num-
ber of states and for this reason one will have to use more refined 
methods than above to solve the Schrödinger equation, in this case 
numerical methods based on finite differences. As we will find the 
occurrence of EPs is a more complicated story than above, they 
may come and go with the gain/loss parameter Vint.
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1). The dot contains a number of electrons, usually small, that may 
be varied via the top gate. There are also pairs of ports that serve as 
emitters and collectors. In Figure 1A, for example, we may let the 
left port L be purely imaginary with VL=iVIm and VR=-iVIm for the 
other port R. Evidently there will be a current flowing through the 
dot. Related configurations have been elaborated for an electron/
microwave billiard (Berggren et al., 2010) and, most recently, for 
interacting Bose-Einstein condensates (Schwartz et al., 2017).

As shown in Figure 2, the pair of levels may change under 
the parametric change, and we recover the EP discussed in the 
previous section. In addition we find, however, that there is another 
EP on further increase of the interaction, i.e., the state with real 
eigenvalues is restored. The calculations are more cumbersome 
than the analytic analysis above; a convenient approach is to 
turn to numerical finite difference methods described previously 
(Tellander & Berggren, 2017). Indeed, this method allows for a 
greater number of states, than just two as was discussed above. 
With a larger number of states one can expect more EPs to 
appear in the spectrum. However, the EPs only seem to appear 
over a finite range of VIm (Tellander & Berggren, 2017) which 
means that the spectrum can, as in Figure 2, be divided into three 
regions:the left region where VIm is less than the critical values 
and all eigenvalues are real, the finite critical region where many 
EPs exist and the rightmost part of the spectrum where most of 
the eigenvalues are again real. This crossover between different 
dynamical regimes is called a dynamical crossover and is of great 
importance for experimental studies of non-Hermitian QM. In the 
region of many EPs, the transmission through the system should 
be enhanced and the states that remain complex in the right region 
of the spectra are believed to be associated to superradiant modes 
(a collection of emitters, such as atoms, that radiates strongly due 
to coherence) studied in atomic physics. Whether superradiance 
really can be viewed as a dynamical crossover is an unanswered 

question (Rotter and Bird, 2015).
A system with more gates (Figure 1B) allows for a more direct 

measurement of EPs and has the possibility to settle the long-lived 
discussion in the field about the geometric phase obtained by a 
state when an EP is encircled in the parameter space. This phase 
is geometric in the sense that it is independent of the path that 
encircles the EP; compare with Cauchy’s theorem for complex 
curve integrals or the classical experiment using Foucault’s 
pendulum to prove that the earth rotates around its own axis. The 
system in Figure 1B can have one independent imaginary potential 
for each pair of leads and the parameter space is therefore two-
dimensional. This system could therefore be transported around an 
EP and the phase change of the wave function could be extracted. 
Similar experiments in analogous systems such as microwave 
(Dembowski, 2001) and exciton-polariton (Gao, 2015) billiards 
have been preformed but a pure quantum experiment is still in the 
future.

Summary and Outlook
Above we have outlined in a schematic way how quantum states 
and currents in a biased PT-symmetric cavity in contact with 
surrounding reservoirs may be emulated by means of complex 
potentials for source and drain. This is, for example, of considerable 
computational convenience when modelling transport in real 
devices at small source-drain bias. This idea is already found to 
work well for the analogue case of two-dimensional microwave 
billiards (Berggren et al., 2010). There is still, however, a challenge 
to design and implement real semiconductor devices with the 
above characteristics.

The physics associated with PT-symmetry is common for 
a number of wave phenomena and there is a rich and rapidly 
expanding literature. This includes, for example, electromagnetic 
systems, in particular in the fields of optics and photonics for 
which many new possibilities have opened up. Complex potentials 
in terms of complex refractive indices enter here in a natural 
way. Promising cases for further studies  are therefore  co-axial 
waveguides, microwave billiards and more. In classical mechanics 
the same kind of behavior may be realized by means of a driven 
and a damped pendulum coupled to each other. Also in electronics 
when two RLC−circuits are inductively coupled, one with 
amplification and one with attenuation, a PT-symmetric system 
is obtained with EPs that may be studied in details. This shows 
that PT-symmetry phenomena are ubiquitous in wave physics as 
well as electrical systems. For recent updates and reviews see 
(Christodoulides et al., 2017; Konotop et al., 2016; Rotter & Bird, 
2015) which shows that the present field is an expanding one 
within fundamental science and technology. Most recently it has 
also been shown how the formalism for non-Hermitian quantum 
physics with gain and loss may be used to analyse a very different 
kind of system, namely photosynthesis (Eleuch & Rotter, 2017).

Finally, it is exciting to find that there is a much older field 
of physics with its very own traditions and literature that relates 
to vibrations in string instruments like violins, cellos and pianos 

Figure 2. Parametric variation of complex energy levels in arbitrary 
units for two nearby interacting quantum states in an embedded 
quantum dot with two opposite ports mimicking source and drain. VI 
defines the imaginary potential within the two “leads”, +iVI in one of them 
and –iVI in the other as VL and VR in Figure 1A. Here (A) shows the real 
part of the two energy levels and (B) the imaginary part. The calculations 
refer to the dot in the inset: VI≠0 is in dark areas at the two ends. The real 
part of the interior potential is set to zero (Tellander & Berggren, 2017).
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(Gough, 1981; Weinreich, 1977, 1979). One thus talks about wolf-
notes which are unfortunate facts of life for, for example, cellists 
who may have to struggle with and tame "wolf cellos." Wolf notes 
refer to unwanted interactions of different modes and how these 
coalesce into damped degenerate states at certain frequencies.  The 
similarity with EPs that appear in non-Hermitian quantum systems 
as described above for a quantum dot and illustrated in Figure 2 
is obvious. We therefore wish to name such features “quantum 
wolves.”
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