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the prostate, esophagus, lung and liver. A large number of 
pediatric patients with central nervous system (CNS) tumors 
also benefit from PBT (Gondi et al., 2016).

Protons interact with matter in three different ways: in-
teractions with atomic electrons, interactions with the atomic 
nucleus, and interactions with the atom as a whole (Verhey 
et al., 1998). Protons that interact with the nucleus may pro-
duce Bremsstrahlung radiation, but this occurs so infrequent-
ly that its effects are negligible. There is also the possibility 
that protons will collide with an atom and produce secondary 
protons, neutrons, or excited nuclei, although these interac-
tions are also rare. Protons primarily lose kinetic energy as 
they traverse matter via inelastic Coulombic interactions with 
atomic orbital electrons, which also deflect the proton trajec-
tory (Newhauser and Zhang, 2015). The deflection due to a 
single interaction is generally quite small as the mass of a 
proton is much larger than that of an electron. However, the 
cumulative effect of many such interactions can be signifi-
cant. The most complete theory of multiple Coulombic scat-
tering was proposed by Molière (1947). Many simplifications 
of this theory have been proposed, although this simplicity 
often reduces the accuracy in modeling Coulombic scatter-
ing at large angles. Gottschalk et al. (1993) approximated 
Molière’s theory to take the form of a Gaussian function, as-
suming the small angle approximation in which sin(θ)≈θ:

	
                                                                 (1)

INTRODUCTION
In 1946, physicist Robert Wilson proposed the idea to treat 
deep-seated tumors in the body using accelerated proton 
beams (Wilson, 1946). The concept and theoretical frame-
work of proton beam therapy (PBT) has expanded significant-
ly, and the Particle Therapy Cooperative Group (PTCOG) 
reported that over 180,000 patients have been treated with 
PBT as of 2018. Patients with tumors that have well-defined 
margins and are in situ benefit the most from this treatment 
method due to the ease of targeting a well-delineated and 
immobile tumor. This can include patients with cancers of 
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Proton beam therapy is an effective treatment option for deep-seated tumors. Although the behavior of protons as they 
travel through tissue is well understood, there are significant technological challenges involved in generating and optimizing 
a beam to effectively treat a specific tumor. Proton therapy Monte Carlo simulation packages require designated operating 
systems and software, thus making it difficult to study the effects of a proton beam in a non-clinical setting. Here we seek 
to (1) develop a model that captures the salient physics while simulating a proton beam entering the body given the beam 
energy and beam width, and (2) optimize these properties to effectively target a simulated tumor in three dimensions. All 
simulations are created in Python. First, three separate one-dimensional Bragg curves at energies 150 MeV, 200 MeV, 
and 250 MeV are simulated to demonstrate the energy deposition of protons as they traverse matter. A two-dimensional 
monoenergetic proton beam is then simulated in the context of targeting a circular tumor by approximating the range by the 
Bragg-Kleeman rule, and then a complete three-dimensional case is studied similarly, in the context of targeting a spheri-
cal tumor. The optimization performed in this study determines the beam width and energy that maximizes the amount of 
energy deposited in the tumor and minimizes energy deposition to surrounding tissue. The results indicate that a constricted 
beam can constrain the energy deposition maximally to the tumor, and we identify the optimal energy to effectively target the 
simulated tumor. Specifically, we show that in our modeling framework a spherical tumor with a 2 cm radius with its center 
located 6 cm inside the body is most effectively targeted with a 99 MeV beam. This work demonstrates the ability to simulate 
a proton beam in two- and three-dimensions at therapeutic energies. 
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where ) is the root mean square (rms) scat-
tering angle of the Gaussian distribution. Abril et al. (2015) 
showed that the rms width of the distribution varies paraboli-
cally with depth z: 

                                rrms = C1z+C1z
2         (2)

where distances are measured in micrometers and the 
parameters C1 and C2 depend on the initial energy of the 
beam according to

	                               Ci = biE
ai	       (3)

Here, the beam energy E is measured in MeV and the 
parameters ai and bi are material-dependent constants. In 
this report, we use these equations to characterize how the 
width of the beam grows with depth, starting from an initial 
angular width s0.

The linear stopping power, or energy loss rate, of pro-
tons as they travel through matter is the average energy 
loss per unit distance. Bloch (1933) developed a detailed 
treatment of this phenomena that takes into account relativ-
istic effects. Bloch demonstrated that accelerated protons’ 
energy loss rate is proportional to the inverse square of its 
velocity. Thus, as protons slow down, their interaction cross 
section increases and more energy is deposited toward the 
end of their track. Once they come to rest there is no more 
energy deposition. This characteristic of protons is referred 
to as the Bragg curve. This can be described by a simple 
mathematical formula based on the Bragg-Kleeman rule 
(Bragg and Kleeman, 1905), which was originally developed 
for alpha particles:

        
(4)

Here S/ρ is the mass stopping power, E is the particle’s 
energy, ρ is the density of the material, p is a constant that 
considers the particle’s velocity, and α is a material-depen-
dent constant.

The range of a proton beam is defined as the depth at 
which half of the protons in the medium come to rest. Proton 
particles in a beam do not come to rest at the same time; 
there are small variations in the energy loss rate of each 
individual particle, causing them to come to rest at various 
distances (Newhauser and Zhang, 2015). This effect is re-
ferred to as range straggling, and although it helps to shape 
the proton Bragg curve, it does not play a critical role for 
dosimetry purposes in the clinic. A first order approximation 
for the range is calculated using the Bragg-Kleeman rule:

	                          R(E) = αEp	       (5)
As before, α is a material-dependent constant, E is the 

particle’s energy, and the exponent p is a constant that con-
siders the particle’s velocity.

Protons are directly ionizing radiation, meaning that they 
interact with cellular atoms or molecules and produce free 
radicals. Free radicals, such as hydroxyl, can be hazardous 
to all major components of the cell. They contain unpaired 

electrons and seek out surrounding atoms to strip an elec-
tron from their orbit, which ultimately damages the cell. Free 
radicals induce single and/or double strand breaks on DNA, 
which can either kill or mutate the cell if the cell is unable to 
repair itself (Girdhani et al., 2013). Therefore, it is impera-
tive to spare healthy tissue during radiation therapy; killing 
or mutating healthy tissue may lead to more acute radia-
tion effects and may induce secondary cancer in the patient. 
Due to the nature of the trajectory of protons, PBT is most 
beneficial for patients with tumors that are localized and are 
situated near organs at risk (Merchant et al., 2008). This of-
fers a strong advantage over photon beam therapy in which 
maximum energy deposition is located closer to the surface 
of the skin, and then gradually decreases over some range 
(Levin et al., 2005). As protons deposit their maximal energy 
near the end of their path with a finite range, this ensures 
tissues anterior and posterior to the tumor receive a minimal 
dose.

Recent research shows that there are advantages in us-
ing PBT compared to photon beam therapy in terms of fo-
cusing energy deposition in the target so as to spare normal 
tissue (Brada et al., 2009; Paganetti et al., 2002). However, 
the roles of tumor type and location have not been fully ex-
plored. The Monte Carlo simulation is a useful computational 
tool that probabilistically samples proton trajectories to pre-
dict the average behavior (i.e. energy deposition pattern) of 
a proton beam. The average beam is determined by repeat-
edly sampling proton trajectories; each trial uses a different 
set of values. Clinical implementation of Monte Carlo dose 
calculations for proton beam therapy are currently being 
developed and tested (Perl et al., & Paganetti, 2012). They 
are found to be more accurate than analytical algorithms be-
cause of the more detailed consideration of tissue interac-
tion. 

Although Monte Carlo calculations present clinical ad-
vantages in optimizing proton treatment planning and ac-
counting for tissue interaction, more research is needed 
to fully understand why protons interact with tissue in the 
way they do. In addition, the software packages that per-
form Monte Carlo calculations are difficult to access outside 
of a clinical setting. Rather than focusing on these clinical 
details, the purpose of this study is to apply analytical algo-
rithms to simulate a proton beam in one-, two- and three-
dimensions to capture the core physics in a straightforward 
and accessible modeling framework. The energy deposited 
within a modeled tumor is calculated, and the parameters 
that minimize the energy deposited outside the tumor while 
maximizing the amount of energy deposited in the tumor are 
determined. As a case study, the optimal parameters for a 
circular and spherical tumor are determined.

METHODS
One-Dimensional Bragg Curve Simulation
Three separate Bragg curves are simulated using Python 
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(version 3.6.9) at energies 150 MeV, 200 MeV, and 250 MeV. 
We used Equation 4 to construct these curves and use the 
parameters for water as this is a reliable tissue-equivalent:  
α = 2.633E-3, ρ = 1 g/cm3, and p = 1.735 (Newhauser and 
Zhang, 2015).  

Target Parameters in Two and Three Dimensions
We assume that the proton is aligned with the midpoint of 
the tumor, which is a circle in two-dimensions or a sphere in 
three dimensions with radius r. We denote the distance from 
the surface to the midpoint of the tumor d. To be specific, we 
consider r = 2 cm and d = 6 cm. 

Simulated Proton Beam in Two Dimensions
A computer program developed in Python determines the 
energy loss rate of a two-dimensional proton beam and sim-
ulates how the beam spreads through a circular tumor and 
surrounding tissue using Equations (1 - 4). When describing 
the rms width of the energy distribution curve with Equations 
(2 - 3), we use the parameter values for water: a1 = -0.058 ± 
0.008, a2 = -1.868 ± 0.010, b1 = (9.39 ± 0.14) × 10-3, and b1 = 
(1.56 ± 0.03) × 10-3 (Abril et al., 2015) and we similarly use 
the water-equivalent parameters for Equation (4) described 
above. The numerical integral of the energy deposition is 
calculated (in MeV) to confirm energy conservation; we also 
specifically calculate the energy deposited over the tumor to 
evaluate the efficacy of the beam.

The simulated proton beam and energy dispersion in 
two and three dimensions are created using a range of ener-
gies from 85 MeV to 105 MeV with a step size of 2 MeV. For 
each value of energy, the initial beam width is systematically 
varied from 0.1 rad to 0.3 rad with step size 0.05 rad, for a 
total of 55 simulations.

The optimal beam energy, E0, and beam width, s0, are 
determined by evaluating the difference between the energy 
deposited in the tumor and the energy deposited in the sur-
rounding tissue:
	                   f(E,s) = Etumor - Etissue	             (6)
An objective function created in Python determines the initial 
energy and beam width that maximize this difference:
	           f(E0,s0) = argmax(Etumor - Etissue)      (7)
These optimal values are then used to create a top-down 
and perspective view of an optimized proton beam. 

Simulated Proton Beam in Two Dimensions
While the task of projecting a three-dimensional beam onto 
a two-dimensional plane can be complex (Newhauser and 
Zhang, 2015), we here model the generalization of the two-
dimensional beam to three-dimensions by first noting that 
the angular component (in cylindrical coordinates) of the en-
ergy dispersion is uniform in three dimensions. For example, 
there is no tendency for the beam to deflect up instead of 
down from the initial orientation of the beam. 

Thus, we consider the energy that is deposited to a unit area 
inside a circular (two-dimensional) tumor to, in the case of a 
(three-dimensional) spherical tumor, be evenly deposited in 
a unit volume in the form of a ring in the three-dimensional 
case. In this framework the total energy deposited within the 
tumor is identical in both the two-dimensional and three-di-
mensional scenarios.

Accuracy of Simulation
To access the accuracy of the simulations used in this re-
port, the depth values at maximum dose deposited are com-
pared to the values established by the National Institute of 
Standards and Technology (Berger et al., 2017). This analy-
sis is performed for the one-dimensional Bragg curves and 
two- and three-dimensional proton beams simulated at 150 
MeV, 200 MeV, and 250 MeV.

Source Code
All code used in this report is available at https://github.com/
ColinECampbell/proton_beam.

RESULTS
Bragg Peak Simulation
Three one-dimensional Bragg curves at 150 MeV, 200 MeV, 
and 250 MeV traveling through water are shown in Figure 1. 
The peaks occur at depths of 15.70 cm, 25.87 cm, and 38.10 
cm, respectively, demonstrating the nonlinear relationship 
between the Bragg peak and the initial energy (Equation 4). 
We note also that, perhaps counterintuitively, increasing the 
beam energy leads to a decrease in the magnitude of the 
Bragg peak. This is due to the energy loss in the broader 
region between the surface of the material and the Bragg 
peak; as we show below, this behavior is important when 
considering coverage of a target with appreciable size, such 
as a tumor.

Two- and Three-Dimensional Simulated Proton Beam
All two-dimensional simulations were completed in approxi-
mately 10 minutes on a modern computer. Figure 2 shows 
the objective function for varying beam energies and beam 

Figure 1. Simulated Bragg curves (energy loss rate as a 
function of depth) of 150 MeV, 200 MeV, and 250 MeV protons 
shown in blue, green, and red, respectively. Figure (a) shows 
the Bragg curves on a log scale axis, and Figure (b) shows the 
Bragg curves on a standard axis.

https://github.com/ColinECampbell/proton_beam
https://github.com/ColinECampbell/proton_beam
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widths; as the figure shows, the optimal parameters are s0 = 
0.1 rad and E0 = 99 MeV. We additionally show the fraction 
of the beam energy provided to the tumor in Table 1; the 
same optimal parameters are identified. Figure 3 uses these 
parameters to show the target (as a black surface) along 
with the energy deposition of the proton beam. Because a 
two-dimensional beam is being considered, we show the en-
ergy deposition as the vertical coordinate. The main source 
of error in these simulations is due to the sharpness of the 
Bragg peak, which can complicate the numerical integration 
of the energy deposition. However, the difference between 
the calculated beam energy and the initial beam energy was 
on average only 2.7%. 

The initial energy of the beam, which controls the depth 
of the Bragg peak (Figure 1), is optimized to place the Bragg 

Figure 2. Objective function for a range of proton beam 
energies and widths in terms of the standard deviation of a 
Gaussian, s.  The initial beam energy ranges from 80 MeV to 100 
MeV with a step size of 2 MeV. The target tumor has a radius, r, of 
2 cm with a distance from the surface to the midpoint of the tumor, 
d, of 6 cm.

Figure 3. (a) Top-down view and (b) perspective view of a 
simulated proton beam optimally entering the system. In 
these figures, yellow represents maximal energy deposition.  A 
circular tumor is simulated and is shown as a dark, shaded region 
on the plots above.

peak near the rear of the tumor. This maximizes the amount 
of the pre-peak energy deposition delivered to the tumor. 
Figure 1 also demonstrates the effect of the beam spread, 
which is significant relative to the target even for the narrow-
est beam considered. As the figure shows, in this case the 
spread serves to provide nontrivial coverage to most of the 
tumor. For example, approximately 73% of the tumor area 
receives a mass stopping power of at least 10 MeV cm-1. Fig-
ure 4 shows the same beam in three dimensions. Because 
each axis necessarily corresponds to a spatial coordinate, 
we show energy deposition with a colorized surface: at any 
position, the surface encloses 80% of the energy deposited 
at the corresponding depth. 

For both two- and three-dimensional simulated proton 
beams, the peaks occur at 15.70 cm, 25.90 cm, and 38.1 cm 
at 150 MeV, 200 MeV, and 250 MeV respectively.

Accuracy of Simulation
The theoretical peak depth values occur at 15.76 cm, 25.93 
cm, and 37.90 cm for a 150 MeV, 200 MeV, and 250 MeV,

s (rad) 85 87 89 91 93 95 97 99 101 103 105

0.10 47.9 51.6 53.6 56.3 57.5 59.3 59.8 60.7 58.4 49.6 46.6

0.15 44.3 48.0 49.9 52.3 53.2 54.5 54.7 54.6 52.0 44.5 41.9

0.2 39.8 43.2 44.9 47.1 47.7 48.7 48.6 48.1 45.5 39.1 37.0

0.25 35.4 38.5 40.1 41.9 42.4 43.1 42.9 42.3 39.9 34.3 32.5

0.3 31.6 34.4 35.8 37.4 37.8 38.3 38.1 37.4 35.2 30.4 28.7

Table 1. The percentage of the beam’s total energy that 
is delivered to the tumor for every combination of initial 
beam widths and energies. The peak value is highlighted.

Figure 4. Energy dispersion of a proton beam in three dimen-
sions. The target is here shown as a gray wireframe; the color-
ized surface contains 80% of the energy deposited at a given 
depth (x coordinate), with the total energy at that depth represent-
ed by surface color.
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respectively (Berger et al., 2017). This corresponds to a per-
cent error of less than 1% for all values produced in this 
study.

DISCUSSION
The results demonstrated in this study are consistent 

with those demonstrated in clinical practice of PBT. The 
Bragg curves shown in Figure 1 demonstrate that higher en-
ergy beams deposit their energy at a greater depth within 
the body, which is consistent with the fact that higher energy 
beams are used to treat deep-seated tumors. The Bragg 
curves are also able to demonstrate the useful property of 
protons having a finite range and a focused depth at which 
a significant portion of their energy is deposited: after the 
Bragg peak has been reached, protons deposit negligible 
energy within a medium. This ensures that healthy tissue sit-
uated posterior to the tumor is unaffected during treatment.  

It is important to note that more detailed models are 
used for treatment planning than the model presented in 
this study. More complete models account for tissue-specific 
interactions and consider the radiobiological effects of treat-
ing a patient with proton therapy. For example, the calcula-
tions performed in this study employed the common simpli-
fication of treating tissue as uniformly equivalent to water 
(Newhauser and Zhang, 2015) for the sake of determining 
general parameters that affect a simulated tumor. While this 
approach is beneficial for studying the main principles that 
characterize the dispersion of energy due to a proton beam 
and successfully demonstrates the relationship between the 
initial beam energy and the depth of the Bragg peak (i.e. 
the depth of the tumor for an optimized beam), the omission 
of the above-mentioned considerations clearly makes this 
model inappropriate for clinical implementation. 

While we have successfully simulated two- and three-
dimensional proton beams entering water (a commonly 
used tissue equivalent framework), we have assumed a 
monoenergetic proton beam for treatment. This means that 
only a narrow depth range can be treated with the Bragg 
peak. To accommodate the entire tumor, a spread-out Bragg 
peak (SOBP) is often created to widen the Bragg peak and 
increase the area of dose distribution to the tumor. This is 
accomplished by varying the energy of the incident proton 
beam and using various energies to produce a flat SOBP. 
Simulation studies of SOBP typically employ time-consum-
ing Monte Carlo methods (Jette and Chen, 2011). 

These results demonstrate important characteristics 
of proton beams that make this method of treatment more 
beneficial for well defined, deep seated tumors compared 
to photon therapy. Protons primarily deposit dose at a lo-
calized depth corresponding to the energy of the incident 
beam, whereas photons deposit dose maximally near the 
surface; the dose decays as it penetrates the body. Overall, 
the missing exit dose and the confined energy deposition 
characteristics with protons are superior to those of photons 

for patients with deep-seated tumors. 
There are several possible extensions for future re-

search. We have approached our simulations using simpli-
fied models to capture the dominant behavior of the proton 
beam deposition; a more complete and accurate simulation 
of the proton beam would require more rigorous calcula-
tions using Bohr’s formula for the linear stopping power and 
Molière’s theory on multiple Coulombic scattering. We have 
also assumed the shape of a tumor to be perfectly symmetri-
cal, whereas, in reality, tumors can be different shapes and 
sizes. Future extensions of this work can include changing 
the tumor’s physical properties and/or its location within the 
body. In addition, more even coverage over a tumor could be 
achieved by incorporating a range of initial beam energies 
to generate a spread-out Bragg peak and/or allowing for a 
moving beam source. 
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