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Statistical Analysis of Rodent Body Weight Data
is Robust to Departures from Normality in
Historical National Toxicology Program Studies
Dated 1980-2013
Alyssa M Taylor-Lapole1∗, Helen C Cunny2, Keith R Shockley3

Parametric statistical tests used to assess body weight changes in rodent experiments assume a normal distribution, and
the actual distribution of the rodent body weights is often assumed to be approximately normal. In order for statistical tests
to be deemed appropriate without routinely confirming the normal distribution for rodent body weight data, the tests must be
powerful enough to detect meaningful changes even when a population deviates from a normal distribution. Here, we present
a novel analysis to assess the normality of rodent body weight data for control animals in 1,386 National Toxicology Program
(NTP) studies and determined how robust a set of procedures are to detect departures from normality. The distributions
of terminal body weight measurements from 90 day and chronic NTP studies were evaluated for normality using graphical
and statistical testing methods. The percent of studies with terminal body weights that were not normally distributed in
normality tests was typically higher in 90-day studies for Fischer 344/N (F344/N) rats and B6C3F1/N (B6C3F1) mice than
Harlan Sprague-Dawley (HSD) rats across all routes of administration evaluated (feed, drinking water, gavage or inhalation).
Through simulation studies, the t-test indicated adequate power to detect a difference in body weights in male B6C3F1 mice
and F344/N rats in 90-day studies, even under a skew normal distribution. According to these results, common parametric
tests display enough power to accurately detect body weight differences from populations not following a normal distribution,
confirming the general notion that the study designs are appropriately powered. In addition to providing adequate power,
the False Positive Rate (FPR) was controlled around 5% in all simulations. These results suggest that parametric tests are
robust enough to give reliable results of body weight analysis in NTP studies where this is an important endpoint. Therefore,
parametric testing approaches are appropriate to detect body weight changes in NTP studies when body weight distributions
do not deviate too far from normality. Future steps will look at the distributions of non-terminal body weights in chronic studies,
organ weights and other species and strains of rodents.

SUMMARY
Rodent body weight data from National Toxicology Program
studies is an important end point used to determine if
a toxicant causes adverse effects. Statistical tests for
differences between body weights of control and treated
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groups often assume that the data are normally distributed
(i.e., are bell-shaped curves). This study evaluated the
importance of the normality assumption in statistical testing
of rodent body weight measurements. It was found that
the normality test used in this project, Shapiro-Wilk’s test
for normality, has 6-56% power to detect skew normal
distributions with samples sizes of 50 animals or less.
However, statistical tests that compare body weights in a
control group to a treated group were able to detect 10%
differences in body weight with at least 80% power for sample
sizes of 10, 20 and 50 rodents for both normally distributed
data and data with a skew normal distribution while keeping
False Positive Rates at an acceptable level of approximately
5%.

INTRODUCTION
The National Toxicology Program (NTP) was established in
1978 with a primary goal of testing the effects of potentially
toxic substances that could negatively impact public health.
Since 1980, the NTP has conducted studies to find potential
adverse toxicants using laboratory rodents. These studies
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are performed to better aid government agencies and
other groups in making public health decisions (Statistical
Procedures (2018)). Body weight data, along with a number
of other end points, are commonly analyzed in NTP studies
to explore the adverse effects of chemicals. A loss in body
weight in a treated group compared to control can be an
indicator that the chemical is causing adverse effects (Lewis
et al. (2002)). An approximate 10% or greater body weight
difference between the control group and the treated groups
is an indicator of adverse effects (Organization (2009)).
Rodent body weight data from the NTP studies is stored
in the NTP Chemical Effects in Biological Systems (CEBS)
public database (Lea et al. (2016)). NTP rodent body
weight is often analyzed using parametric statistical tests to
compare control and treated groups (Statistical Procedures
(2018)). Parametric tests assume a normal distribution but in
nature, populations do not always follow a normal distribution
(Frank (2009)). The body weight distributions of rodents in
NTP studies are usually assumed to have an approximately
normal distribution. While not normally used to analyze body
weight in NTP studies, nonparametric tests do not assume
a normal distribution and can be used when a population
does not follow the normal distribution. In this analysis we
evaluate the ability of parametric and nonparametric testing
to detect a 10% difference in body weight between two
groups of normally distributed body weight data and skew-
normal body weight data. The rodents used in this study are
two different strains of rat, Fischer 344/N (F344/N) rats and
Harlan Sprague-Dawley (HSD) rats and one strain of mice,
the B6C3F1/N (B6C3F1) mouse which have been used in
NTP toxicology research studies for over 40 years. NTP’s
consistent use of these strains of rodents over the years has
created one of the largest rodent bioassay databases in the
world (Maronpot et al. (2016)).

Not only is the robustness of parametric and nonpara-
metric testing assessed in this analysis, but the rodent body
weight data itself underwent normality testing to investigate
if the rodent body weights generally followed a normal dis-
tribution. It is the hypothesis of this paper that while some
rodent body weight data may not be normally distributed, the
parametric test used will be robust enough to detect a 10%
body weight difference between control and treated groups.
Specifically, we hypothesized that the parametric t-test will
be able to detect 10% body weight differences from the sim-
ulated skew-normal body weight data.

Both visual and numerical methods were used in
this analysis. An understanding of these is required to
fully understand the analysis performed. Visual methods
used were QQ-plots to plot the observed data on the y-
axis versus the theoretical distribution, in this case the
normal distribution, on the x-axis. By doing so, the
sample’s distribution was easily compared to the normal
distribution and any deviations were clearly shown (Moore

and Mccabe (2001)). Departures from normality and
influential observations can also be seen in a QQ-plot (Mcgill
et al. (1978)). Another concept that must be understood is
precison and confidence intervals. Precision measures how
close estimates are to one another and it is demonstrated
through confidence intervals; smaller confidence intervals
are considered more precise and larger confidence intervals
are less precise (Trafimow (2018)). A 95% confidence
interval is determined by the simulated sample and is the
interval that has a 95% probability of containing the actual
parameter value (Moore and Mccabe (2001)). In other
words, a 95% confidence interval contains the data that
lies between the 2.5 and 97.5 percentiles of the empirical
distribution of mean values.

Previous studies have examined parameters needed
for a parametric test to be robust when testing samples
that are not normally distributed. A study investigated
how large a sample size should be in order for the
Central Limit Theorem (CLT) to hold true (Curran-Everett
(2017)). The CLT proposes that the average of a large set
of independent variables tends to be normally distributed
(Lumley et al. (2002)). Typically, a sample size of 30-50
data points is considered large enough to satisfy normal
distribution assumptions, but Curran-Everett found that in
a skewed distribution of approximately 500 data points the
empirical distribution of sample means still did not follow
a normal distribution. This study is a motivation for our
analysis because of the comparatively small sample sizes
used in rodent studies due to animal welfare and other
considerations. A study performed a study similar to the
one discussed in this paper (Rasch and Guiard (2004)). By
comparing the robustness of the t-test and Mann-Whitney
test against simulated psychological data they found that
the t-test performs just as well if not better than the Mann-
Whitney test. Analyses of the robustness of parametric
testing have also been studied in a biomedical setting.
In a study, the robustness of statistical procedures based
on Welch’s t-test and Student’s t-test to departures from
normality was evaluated (John et al. (2013)). John et
al. (2013) found that a Student’s t-test is most robust
after performing trait transformations according to ranks
for their Multifactor Dimensionality Reduction (MB-MDR)
methodology. These results motivate our study which seeks
to determine if parametric testing is robust enough to handle
departures from normality in rodent body weight data and if
transformations or other manipulations need to be performed
in order to obtain an acceptable level of statistical power.

Body weights may follow a normal distribution at the
beginning of a study, but because of adverse effects in
treated groups as well as other factors, may not follow
a normal distribution at the end of a study. In a
study, preliminary normality tests were performed on two
equally sized samples before performing a two-sample t-test
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(Rochon et al. (2012)). Two different methods were utilized;
using parametric testing (t-test) when both samples passed a
normality test but using nonparametric (Mann-Whitney test)
testing when either or both samples failed a normality test or
using parametric testing if the residuals from both samples
passed a normality test and nonparametric testing otherwise.
They then computed the Type 1 error rates (false positive
or FPRs) and compared the two strategies. Not only did
Rochon et al. (2012) conclude that testing for normality is
unnecessary with a sufficiently large sample size, but they
found that this initial screening process changed Type 1
error rates compared to typical Type 1 error rates (0.05)
under both methods. Using an initial screening process
increased Type 1 error rates, no longer controlling them
at 0.05. In other words, many parametric tests are strong
enough to detect differences even when the sample is not
quite normally distributed. Also, a sufficiently large sample
size can vary from study to study depending on the data
being used. Body weights have been described using a skew
normal distribution in human populations (Hermanussen et
al. (2001)), and in this paper we explored the effects of
a skew normal distribution on analysis of body weight in
toxicology studies using laboratory rodents.

The analysis performed in this paper is important in
order to gain insight into the power of the statistical tests
used to assess body weight changes in NTP studies on the
actual data used for the statistical tests. It also provides
an in-depth investigation into a large data set that has
never been studied in this way. In this paper a broad
understanding of rodent body weight data and how this
data is distributed is discussed. How factors such as
diet could and have changed the general distribution over
time and gives insight to the biologists on what factors
could be altering rodent body weight other than the adverse
toxicants is also explored. Not only does this analysis benefit
toxicologists, but it shows the importance of investigating
the distribution of endpoints of interest so that the most
statistically reliable results can be obtained. This study
also sheds light on the robustness of a common parametric
test and how its accuracy is affected by a distribution
that does not follow a perfectly normal distribution. The
general approach to investigating the suitability of parametric
testing using different underlying data distributions that we
describe here holds interdisciplinary interest, with potential
applications across a broad range of scientific disciplines
such as statistics, ecology, toxicology and epidemiology.
This paper opens the door to other similar analyses that can
be performed on the same database such as organ weight
analysis.

METHODS
Description of the Chemical Effects in Biological Systems
(CEBS) database. CEBS is a repository for NTP toxicology

data (Lea et al. (2016)). This public database contains a wide
range of endpoints from hundreds of NTP studies including
body weight data from individual subjects. Terminal control
body weight measurements from the CEBS database was
downloaded from ftp://anonftp.niehs.nih.gov/ntp-cebs/dataty
pe/ in a file termed “NTP_TERMINAL_BW.txt” which included
Fischer 344/N rats (F344/N), Harlan Sprague-Dawley rats
(HSD) and B6C3F1 mice. F344/N rats were frequently used
in studies from 1980-2007 and less frequently used from
2008-2013; HSD rats were used occasionally from 1995-
2007 and more consistently from 2007-2013 (HSD males
were used in two instances before 1995 in dosed feed
studies) and B6C3F1 mice were used in studies from 1980-
2013.

Evaluating normality in body weight data. The data
was grouped in subsets according to species, study start
date, sex, route of administration and length of study, sorted
separately for chronic (~ 2-year) and 90-day studies. Only
the results from 90-day study data is shown and discussed in
detail in this analysis. The analysis focused on three species:
Fischer 344/N rats (F344/N), Harlan Sprague-Dawley rats
(HSD) and B6C3F1/N (B6C3F1) mice. Data were further
grouped by start date and animal diet; 632 studies of rodents
were fed the NIH-07 diet (1980-1994) and 754 studies of
rodents were fed the NTP-2000 diet (1995-2013).

Animal care was in compliance with The Guide for the
Care and Use of Laboratory Animals (Institute for Labora-
tory Animal Research, National Research Council, National
Academies Press, Washington, DC, multiple editions includ-
ing the 8th edition published in 2011). Studies were approved
by the conducting laboratory’s Institutional Animal Care and
Use Committee (IACUC). The 90-day and chronic (2-year)
rodent toxicology studies from which the data came gener-
ally followed standard study designs which are described
in several toxicology textbooks such as Hayes’ Principles
and Methods of Toxicology, 6th edition, Chapters 24 and 25
(Hayes and Kruger (2014)). Information about the history
and design of the NTP 90-day and chronic studies can be
found (Chhabra et al. (1990)). More information can also be
found on the NTP website, https://ntp.niehs.nih.gov/whatwe
study/testpgm/cartox/index.html.

Quantile quantile-plots (QQ-plots) and histograms of
measured body weights were created to inspect the data
for influential observations and assess data normality. In
addition, boxplots of the body weights of each strain
according to dose route were generated to gain visual
insight to the spread of the data. A coefficient of variation
(CV) describes the variation of all points of a dataset by
dividing the standard deviation of the dataset by the mean
of the dataset (Abdi (2010)). A coefficient of variation was
calculated for each species at each dose route. These
coefficients of variation were depicted by boxplots in order
to see the spread of the variation of each species at each
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dose route (Figure 4).
The data was systematically sorted into groups based on

unique combinations of strain-species-start date-sex-route-
study length, and then the proportion of rejections of the null
hypothesis of normality were found for each group using the
Shapiro-Wilk normality test (Royston (1982)) based on a p-
value threshold of 0.05. The proportion of rejections was
calculated as the number of studies that the normality test
identified as having a non-normal distribution divided by the
total number of studies. All computations were done in R
(R Core Team, 2017). The total number of studies per dose
route evaluated by the Shapiro-Wilk normality test can be
found in Table 2.

Simulation study to investigate deviations from normality.
A skew normal distribution is a type of normal distribution
with a shape parameter added to it (Azzalini (2011)). A
shape parameter affects the shape of data; it can cause
it to skew left or right and determines by how much.
A measure of skew, or skewness (g), is how skewed
the data is from the normal distribution. As opposed
to the normal distribution, the skew normal with a non-
zero skewness does not have its center located at the
mean (Azzalini (2011)). Simulations of 10,000 replicates
of body weight measurements were generated using the
R/sn package (Azzalini (2019)). Simulations of body weights
for sample sizes of 5, 10, 20 and 50 were performed
by generating values from normal distributions with the
means and standard deviation values shown in Table 1.
By manually searching through the data, representative
mean body weights and standard deviations were chosen
for male F334/N rats, HSD rats and B6C3F1 mice. These
representative mean body weights and standard deviations
were found by finding the average body weight and standard
deviation for each species/sex/dose route group. These
averages were then compared to random selections of
individual studies from each species/sex/dose route group to
ensure they were representative of the population. For the
male F344/N rats, a mean of 365g and a standard deviation
of 17 was used. For HSD rats, a mean of 440g and standard
deviation of 25 was used. For the B6C3F1 mice a mean of
35g and a standard deviation of 2.5 was used. The equation

to determine skew is γ = 4−π
2
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Shape (α) determined the general shape of the distribution.
Location (ξ) is the shift of the distribution (similar to the mean
(µ)) and is determined by the equation ξ = µ − ωδ
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The scale (ω) is the measure of the spread (similar to the
standard deviation (σ)) and is determined by the equation
ω =

√
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. By using these equations and preselected

values of the mean and variance (σ2), shape the values of
these parameters were generated along with a value of skew
(γ). Skew represents the degree to which a sample deviates

from a theoretical distribution, or shape (Doane and Seward,
2011). The simulations were run with a skew of γ≈2.87 to
determine the power of each test to detect deviations from
normality. The skewness was calculated using the R/e1071
package for the studies that were rejected by the SW test
(Table 4) (Meyer et al. (2019)).

Table 1. Parameters Used. This is a table of parameters
and equations used to run the t-test and Mann-Whitney test
simulations for male rodents. The average weights of all
species/strains can be found here that were used to simulate
the different samples and distributions.

Table 2. Total Studies Per Dose Route. Listed are
the total number of NTP studies per dose route. They are
divided according to sex/species/strain/diet. HSD rats were
not included because of the lack of data provided. It is also
important to note that HSD were not introduced into NTP
studies until much later than the other two species/strains
in this paper.

False positive rates were also calculated to determine
if these tests were correctly detecting departures from
normality at the chosen threshold (0.05). False positive
rates, or Type I errors, are the proportions of howmany times
the null hypothesis is rejected when it is actually true (Moore
and Mccabe (2001)). This is calculated by running each
normality test with a skew of zero (a normal distribution) and
calculating proportions of how many rejections were found.
The power of a statistical test is the probability that a specific
difference will be detected (Shockley and Kissling (2018)).
In this analysis, power was portrayed as the proportion of
rejections from normality for different levels of skewness from
the skew normal distribution.
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Simulation study to investigate body weight changes.
Simulations of 10,000 replicates were conducted for the t-test
(parametric) and Mann-Whitney test (nonparametric) (Bauer
(1972)). These simulations were run for samples sizes of
5, 10, 20 and 50 rodents. Simulations were run based on
the mean terminal body weights and standard deviations
chosen via manual search (as mentioned previously) for
male F344/N and HSD rats and male B6C3F1 mice in
90-day studies. The t-test and Mann-Whitney tests were
chosen as representative parametric and nonparametric
tests, respectively, for a simulated case of a control and
one dose group. A false positive rate was obtained for
each test using the same simulated datasets. The false
positive rates were obtained by running the t-test and Mann-
Whitney tests with two groups of simulated body weight
measurements where both groups were normally distributed
with no difference in mean body weight. The proportion of
rejections was recorded as the false positive rate. The power
of each test was obtained by simulating data that had a 5%,
10% and 20% lower body weight compared to the mean of
the controls at a skew (γ) of 2.87. In this case, the power of
each test is calculated as the proportion of simulated studies
that are statistically different from the simulated control group
at the =0.05 threshold. For the male F344/N rats the body
weight differences were compared to a mean of 365g, for
male HSD rats body weight differences were compared to
a mean of 440g, and for male B6C3F1 mice body weight
differences were compared to a mean of 35g (Table 1).

The bias of the mean estimate is the difference between
the mean of the simulated data and the true mean. The
bias of an estimator is determined by the equation B

(
θ̂
)
=

Ê((x|θ)(θ̂ − θ) where θ is the value of a parameter (in this
case the mean), θ̂ is the estimator of θ, and Ê((x|θ) denotes
the expected value across all observations (Kim (2010)).
If the mean of the sampling distribution generated through
simulations is not equal to, or approximately equal to, the
true mean then the simulated sample would be considered
biased (Moore and Mccabe (2001)). Precision of the mean
estimate is found by determining the 95% confidence interval
of the simulated means.

Bias for this study was calculated as the average of
the absolute value of bias of the mean estimate for 10,000
simulations for rodent sample sizes of 5, 10, 20 and 50.
Percent bias of the mean estimate was determined by
dividing the calculated bias by the mean of a strain’s body
weight measurements and multiplying this result by 100.
Precision of the mean estimate was based on the 95%
confidence interval of mean values calculated across 10,000
simulations for rodent sample sizes of 5, 10, 20 and 50.

Testing for body weight differences due to diet. Two
different diets were used over the span of years during which
the study data used in this analysis were collected. As

mentioned previously the NIH-07 diet was fed to rodents from
1980-1994. From 1995-2013 (and present day) the NTP-
2000 diet was fed to the rodents in these studies. In order
to determine if there was a statistically significant difference
in body weight between rodents fed the two diets, a Mann-
Whitney test was used to compare the body weights of
rodents fed the NIH-07 diet and rodents fed the NTP-2000
diet. In order to look at differences in body weight for each
dose route, rodents were separated by diet, species, sex
and dose route prior to conducting the comparisons using
the Mann-Whitney test.

RESULTS
Distribution of observed terminal body weight measurements
from 90-day studies. In order to better observe the difference
in body weight across the studies with respect to diet and
dose route, the distribution of observed body weights and
mean body weights of each subgroup in F334/N rats and
B6C3F1 mice were generated in boxplots (Figure 1 and
2). Figure 1A depicts the spread of terminal control body
weight values for F344/N rats according to diet and dose
route. Figure 1B shows the distribution of the mean body
weights from each study subgroup for F344/N rats. Figure
2A is the spread of terminal control body weight values for
B6C3F1 mice according to diet and dose route. Figure
2B shows the distribution of the mean body weights from
each study subgroup for B6C3F1 mice. HSD rats were not
included in these boxplots because there was insufficient
data to create representative boxplots of the data available.
Mann-Whitney tests were used to compare body weights of
F344/N rats and B6C3F1 mice on the NIH-07 diet to those
on the NTP-2000. The difference between the weights of
rodents consuming the NIH-07 diet to the NTP-2000 diet was
shown to be statistically significant (data not shown). Figure
3 shows examples of quantile-quantile plots (Figures 3A and
3C) and histograms (Figures 3B and 3D) of control body
weight measurements from two different studies, where 3A,C
follow a normal distribution and 3B,D do not.

The proportion of rejections of the null hypothesis
of normality for terminal body weight in 90-day studies
according to strain and dose route can be found in Table
3. It is important to note that proportions of rejections
for F344/N rats and B6C3F1 mice were determined by
analyzing a minimum of 25 study groups per dose route. A
maximum of 90 F344/N male rat study groups were obtained
and analyzed for gavage dose routes and a maximum of
88 B6C3F1 male mouse study groups were analyzed for
gavage dose routes. Due to fewer studies available for
HSD, HSD rats were not included in this portion of the
analysis. The F344/N rats showed the highest proportions
of rejections across all routes of administration except for
inhalation. B6C3F1 proportions were slightly higher than
F344/N rates for the dose route inhalation with a maximum
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Figure 1. F344/N Rat Body Weight Distributions. Boxplots
depicting distribution of terminal F344/N rat body weights in NTP
90-day studies according to diet consumed and route of
administration of the test article. Represented in the figure by the
box is the median, first quartile, third quartile, and the vertical bars
represent the 1.5*IQR. The IQR is calculated by finding the
difference between the 25th percentile and the 75th percentile of
the data (Diez et al. (2019)). The type of diet and dose route is
denoted on the x-axis by DF = Dosed Feed, DW = Dosed Water, G
= Gavage, I = Inhalation. F07 refers to females (F) given the
NIH-07 diet, F00 refers to females given the NTP-2000 diet. M07
refers to males (M) given the NIH-07 diet, M00 refers to males
given the NTP-2000 diet. Body weight (in grams) is on the y-axis.
The number below the diet and dose route indicates how many
data points are included in each boxplot. A. Body weight
distribution of F344/N rats. Median female F344/N body weights
are 191.7-197.5g while median male F344/N body weights are
325.0-354.3g. B. Body weight distribution of mean body weights of
F344/N rats per study subgroup. The median of the mean female
and male body weights are approximately the same as in A, but
there are fewer data points exceeding the 1.5 IQR limits and the
spread of the data is generally smaller.

rejection proportion of 17.39% compared to F344/N rats
highest proportion of rejection for this dose route being
14.29%. In Table 4, median values of skewness (g) indicate
strong skew (|g| > 1), moderate skew (1 > |g| > 0.5) and very
little skew (|g| < 0.5) across the different conditions. The
median m ranged between -2.23 (strongly negatively skewed
in Male F344/N rats in Inhalation studies in the NIH-07 diet)
to 2.12 (strongly positively skewed for Female F344/N rats
in Inhalation studies in the NTP 2000 diet) while the smallest
|g| was 0.23 from a rejected distribution of female B6C3F1
mice via Inhalation in the NIH-07 diet (data not shown)
and the largest |g|was 3.05 from a rejected distribution of
male F344/N rats via Inhalation in the NIH-07 diet (data not
shown).

Figure 2. B6C3F1 Mouse Body Weight Distributions. Boxplots
depicting the distribution of B6C3F1 mouse body weights in NTP
90-day studies according to diet consumed and route of
administration of the test article. Represented in the figure by the
box is the median, first quartile, third quartile, and the vertical bars
represent the1.5*IQR. The IQR is calculated by finding the
difference between the 25thpercentile and the 75th percentile of
the data (Diez et al. (2019)). The type of diet and dose route is
denoted on the x-axis by DF = Dosed Feed, DW = Dosed Water, G
= Gavage, I = Inhalation. F07 refers to females (F) given the
NIH-07 diet, F00 refers to females given the NTP-2000 diet. Body
weight (in grams) is on the y-axis. M07 refers to males (M) given
the NIH-07 diet, M00 refers to males given the NTP-2000 diet.The
number below the diet and dose route indicates how many data
points are included in each boxplot. A. Body weight distribution of
B6C3F1 mice. Female B6C3F1 mice median body weights range
26.5-31.3g and male B6C3F1 median body weights range
32.6-40.1g. B. Body weight distribution of mean body weights of
B6C3F1 mice per study subgroup. The median of the male and
female body weights are approximately the same as in A, but
there are fewer data pointsexceeding the 1.5 IQR limits and the
spread is generally smaller.

Table 3. Results of Testing for Normality. Proportion
of rejections according to SW test with a threshold of 0.05.
Proportions for F344/N rats and B6C3F1 mice were obtained
by analyzing at least 25 studies per dose route. The F344/N
rats showed the highest proportions of rejections across all
routes of administration except for inhalation. The F344/N
rats proportions of rejections ranged from <0.005%-18.46%;
B6C3F1 proportions were slightly higher for the dose route
inhalation with a maximum rejection proportion of 17.39%
compared to F344/N rats highest proportion of rejection for
this dose route being 14.29%.
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Figure 3. Graphical Comparisono f Normally Distributed vs
Non-normally Distributed Samples. A, B. Distribution of body
weights from 90-day female B6C3F1 mice exposed to
1,1,1-Trichloroethane (71-55-6) via dosed feed on the NTP diet.
The SW test for normality (Royston (1982)) moproduced a p-value
of 0.419 and therefore, the null hypothesis of a normal distribution
is not rejected. C, D. Distribution of body weights from 90-day
female B6C3F1 mice exposed to
2-Hydroxy-4-methoxybenzophenone (131-57-7) via dosed feed on
the NIH diet. The point in blue is a point that lies beyond the 1.5
IQR (Diez et al. (2019)). The SW test for normality produced a
p-value of 0.004 and therefore the null hypothesis of a normal
distribution is rejected.

Table 4. Median Skew Values of Studies Rejecting
Normal Distribution. The median value of skew for studies
that were rejected according to the SW test. N/A are in
place where no studies were rejected according to the SW
test. Skewness (g) indicate strong skew (|g| > 1), moderate
skew (1 > |g| > 0.5) and very little skew (|g| < 0.5). The
median ranged between -2.23 (strongly negatively skewed
in Male F344/N rats in Inhalation studies in the NIH-07 diet)
to 2.12 (strongly positively skewed for Female F344/N rats
in Inhalation studies in the NTP 2000 diet) while the smallest
|g| was 0.23 from a rejected distribution of female B6C3F1
mice via Inhalation in the NIH-07 diet (data not shown)
and the largest |g|was 3.05 from a rejected distribution of
male F344/N rats via Inhalation in the NIH-07 diet (data not
shown).

Figure 4. Distribution of the Coefficient of Variation of Each
Rodent Strain. Boxplots depicting the distribution ofeach strain’s
coefficient of variance (CVs) for terminal body weight in NTP
90-day studies according to route of administration and diet.
Represented in the figure by the box is the median, first quartile,
third quartile, and the vertical bars represent the 1.5*IQR. On the
x-axis, the dose route is denoted by DF = Dosed Feed, DW =
Dosed Water, G = Gavage, I = Inhalation. F07 refers to females
given the NIH-07 diet, F00 refers to females given the NTP-2000
diet. M07 refers to males given the NIH-07 diet, M00 refers to
males given the NTP-2000 diet. The y-axis shows the range of the
proportion representing the CV. The number below the diet and
dose route indicates how many data points are included in each
boxplot. A. Distribution of CVs for F344/N rats. The IQR ranged
0.01-0.12g. B. Distribution of CVs for B6C3F1 mice. The IQR
ranged 0.01-0.15g.The IQR is calculated by finding the difference
between the 25thpercentile and the 75th percentile of the data
(Diez et al. (2019)).

Coefficients of variation (CVs) of each species’ body
weight according to sex, strain and dose route can be seen in
Figure 4. Both F344/N rats and B6C3F1 mice show minimal
variation in their medians with relatively few outliers beyond
the 1.5 interquartile range (IQR). The IQR is calculated by
finding the difference between the 25th percentile and the
75th percentile of the data (Diez et al. (2019)). HSD rats were
not included due to insufficient data to create representative
boxplots.
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False positive rate and statistical power to detect
departures from normality. The false positive rate (FPR) for
the SW tests is shown in Table 5 and it can be seen that the
FPR never surpassed 5.5%. Table 5 also shows the power of
the SW to detect departures of normality using a skewness
value of 2.87. For a sample size of 10 rodents, there was up
to 11.8% power to detect departures from normality and for
a sample size of 50 rodents there was up to 57.0% power to
detect departures from normality.

Table 5. Robustness of Shapiro-Wilk Test. The
false positive rates (FPRs) and power to detect departures
from normality for simulations of the SW test. FPRs were
calculated with a skew (g) of 0 (no skew) and the power to
detect departures from normality shown here was calculated
at a skew of 2.87. The FPR never surpassed 5.5%, which
is close to the typical FPR of 5.0%. For a sample size of 10
rodents, there was up to 11.8% power to detect departures
from normality and for a sample size of 50 rodents there
was up to 57.0% power to detect departures from normality.
The level of power to detect departures from normality is
consistent across all strains at each sample size. Power
greater than 80% is not obtained until reaching a sample size
of 100 rodents.

False positive rate and statistical power to detect body
weight differences. The FPR for both the t-test and theMann-
Whitney test never rose above 5.1% (data not shown). The
results for the power of the t-test and Mann-Whitney test are
found in Table 6. For a 10% difference in body weight, a
skewed normal distribution and a sample size of 10 male
F344/N rats, the t-test and Mann-Whitney test had 99.2%
and 98.9% power, respectively, to detect a 10% body weight
difference. Under the same conditions for male HSD rats the
t-test and Mann-Whitney test had 95.7% and 94.3% power
and for male B6C3F1 mice the t-test and Mann-Whitney test
had 83.6% and 82.1% power, respectively, to detect a 10%
body weight difference.

Table 6. Robustness of Parametric and Nonparamet-
ric Tests. Power of the t-test and Mann-Whitney test to
detect body weight differences of 5%, 10%, and 20% for
a normal distribution (γ=0) and a skew normal distribution
(γ=2.87). Results from simulations of male F344/N rats, HSD
rats, and B6C3F1 mice are shown. Both tests had greater
than 80% to detect a 10% body weight difference from a
sample size of 10 rodents for each strain. For a 10% dif-
ference in body weight, a skewed normal distribution, and

a sample size of 10 male F344/N rats, the t-test and Mann-
Whitney test had 99.2% and 98.9% power, respectively, to
detect a 10% body weight difference. Under the same con-
ditions for male HSD rats the t-test and Mann-Whitney test
had 95.7% and 94.3% power and for male B6C3F1 mice the
t-test and Mann-Whitney test had 83.6% and 82.1% power,
respectively, to detect a 10% body weight difference.
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Bias and precision of mean body weight estimates.
Statistical bias occurs when the results of a test show
differently (either overestimating or underestimating) than the
true value of a parameter. The value that we obtain for bias of
the mean body weight estimate is the difference between the
estimated value of the parameter from the statistical test and
the actual value of the parameter (Piedmont (2014)). For all
cases examined here the average bias of the mean estimate
across 10,000 simulations never exceeded 0.05% (data not
shown), which is very small and makes sense given that
the mean should be an unbiased estimator of the population
mean. The 95% confidence intervals for mean body weight
are presented in Table 7. The confidence intervals for a skew
of 0 consistently overlaps the confidence intervals obtained
using a skew of 2.87.

Table 7. Confidence Intervals of Parametric and
Nonparametric Tests. Precision of male F344/N rats, HSD
rats, and B6C3F1 mice shown by 95% confidence intervals
for a normal distribution (γ=0) and a skew normal distribution
(γ=2.87). The precision of the estimated parameters can be
found by looking at the confidence intervals of the estimates;
smaller confidence intervals are considered more precise
and larger confidence intervals are less precise (Trafimow
(2018)). The confidence intervals for a skew of 0 consistently
overlaps the confidence intervals obtained using a skew of
2.87.

DISCUSSION
Observation of the median body weights for each strain in
Figures 1A and 2A shows that the mouse body weights are
more variable than F344/N rat body weights. It has also been
reported that mouse body weights are usually more variable
than rat body weights (Hoffman et al. (2002)). This appears
to be true for the data presented in this analysis according

to Figure 4. It can be seen from Figures 1 and 2 that in
each species males weigh more than females and there are
different levels of variability in each dose route group. While
the F344/N rats tend to have similar median body weight
across all dose routes with respect to sex, B6C3F1mice have
more variable median body weights across all dose routes. It
is interesting to note that Figures 1A also showsmedian body
weights, in general, appear slightly higher for rats consuming
NIH-07 diet compared to NTP-2000. In contrast, Figure 2A
shows that median body weights, in general, appear slightly
higher for mice consuming the NTP-2000 diet. Another factor
that must be considered is the variability of the number of
animals in each dose route group. For 90-day dosed feed
studies a total of 638 F344/N male rats and 660 B6C3F1
male mice were included. For dosed water studies a total
of 320 F344/N males and 308 B6C3F1 males were included.
These imbalances are reflected in the gavage and inhalation
dose route groups as well. In addition, rats fed NTP 2000 diet
tended to have lower median body weights than rats fed NIH-
07 diet as seen in Figure 1. When looking at Figure 2, both
the median of observed body weights (Figure 2A) and the
median of the mean body weight of each subgroup appear
to be higher for B6C3F1 mice fed the NTP-2000 diet rather
than the NIH-07 diet. This difference in body weight was
shown to be statistically significant through a Mann-Whitney
test comparing the body weights of rodents fed the NIH-07
diet and rodents fed the NTP-2000 diet (data not shown).

Although we examined several different normality tests
(data not shown), the Shapiro-Wilk test has been widely used
and is accepted as a powerful statistical test for normality
(Ghasemi and Zahediasl (2012)). Through the simulations
performed with the Shapiro-Wilk test to detect departures
from normality, a larger sample size of 50 rodents only
showed up to 57% power, far below the 80% power that
is desired of most applications of statistical tests (Cohen
(1988)). In Cohen’s Statistical Power Analysis for the
Behavioral Sciences (1988), the author demonstrates that
due to the funds and resources needed for most experiments
to obtain the sample sizes generally used, 80% power is the
conventional rule of thumb that researchers should strive to
obtain or attain (Cohen (1988)). Therefore, we implemented
the Shapiro Wilk test for normality in unison with graphical
methods to assess normality in this study.

The t-test was highly robust to departures from normality
in the simulation studies of the 90-day data. An approximate
10% or greater body weight difference between control
and treated groups indicates adverse effects (Organization
(2009)). This is consistent prior other findings (Sullivan and
D’Agostino (1992)). That study investigated the difference
in power from a t-test performed with skewed data and
power from a t-test performed with simulated data following
a normal distribution and found differences were very small.
The same can be seen in the results; the power to detect a
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10% difference in body weights compared to controls from
skew normal distributions and the power to detect a 10%
difference in normally distributed body weights compared to
controls with a sample size of 10 are within 2% of each
other. For a skew normal distribution and a sample size
of 10, the t-test had at least 80% power to detect a 10%
body weight difference. From Table 6 the t-test showed false
positive rates (FPR) of simulated data with no skew only
rose above 5% for B6C3F1 mice in groups of 10 (FPR of
5.07%), HSD rats in groups of 20 (FPR of 5.15%) and HSD
rats in groups of 50 (FPR of 5.40%). When data with a skew
normal distribution was simulated, the t-test showed false
positive rates rose above 5% for F344/N rats in groups of 50
(FPR of 5.22%) and B6C3F1 mice in groups of 50 (FPR of
5.38%). The Mann-Whitney test showed false positive rates
of simulated data with no skew only rose above 5% for HSD
rats in groups of 50 (FPR of 5.31%). For skew normal data,
the Mann-Whitney test showed false positive rates above 5%
for B6C3F1 mice in groups of 50 (FPR of 5.01%).

The diet used in NTP studies changed in 1994 to reduce
the protein-to-fat ratio, aiming to keep laboratory rodents
healthier as they aged. The NIH-07 (1980-1994) diet was
24% protein, 5% fat and 3.5% fiber and the NTP-2000
(1995-present) diet is 14.5% protein, 8.5% fat and 9.5%
fiber (Rao, 1996). The NTP-2000 diet showed evidence
of decreased lesions in F344/N rats compared to rats fed
the NIH-07 diet (Rao, 1996). The results show in some
cases there is an increase in the percentage of rejections
of normality for studies using NTP-2000 diet for F344/N rats
and B6C3F1 mice. A possible reason that there may be an
increase in departures from normality using the NTP-2000
diet compared to the NIH-07 diet is that the F344/N strain was
highly inbred and began to show an increase in leukemia and
other types of tumor (King-Herbert et al. (2010)) that could
influence body weight. In fact, this circumstance motivated
the NTP to make the switch to using the Harlan Sprague-
Dawley strain as their primary rat strain in studies (King-
Herbert et al. (2010)). As mentioned earlier, a minimum of
25 studies for F334/N and B6C3F1 were used in the analysis
shown in Table 3 but a maximum of 90 F344/N rat studies
was obtained as well as a maximum of 88 B6C3F1 mouse
studies. The number of studies available to us with HSD rat
data was much more limited, with a minimum of 2 studies in
the dosed water dose route and a maximum of 23 studies in
the gavage dose route. HSD rats were not included in this
portion of the analysis due to this reason.

Overall, data from 90-day studies showed little deviation
from normality while the HSD strain showed no deviation
from normality. It has been suggested that choice of
diet and housing type for B6C3F1 mice greatly impact the
mortality rates and tumor growth of these mice (Rao and
Crockett (2003)). This gives a possible explanation for
the different levels of variation between the different diets

and dose routes. Both the t-test and Mann-Whitney test
show 80% power to detect a 10% body weight difference at
various distributions. Based on our simulation results, large
enough sample sizes allow our parametric tests to handle
populations that do not follow a strict normal distribution. In
this case, a sample size of 10 was sufficient in order for the
t-test to have adequate power and control the false positive
rate at approximately 5%.

Discoveries and challenges from the analysis of body
weights. Our approach to this study assessed if paramet-
ric testing could have adequate power and accuracy to test
differences between two groups that have a skew normal dis-
tribution. Due to parametric tests relying on an approximately
normal distribution, the investigation of a skew normal distri-
bution both adhered to an approximately normal distribution
while also investigating the effect of deviations from normality
on parametric testing. This analysis provided us with insight
as to how certain design variables may affect body weight
differences between groups. It was found that individually
housed B6C3F1 male mice showed a decrease in the devel-
opment of certain tumors and an increase in survival com-
pared to those housed in groups (Haseman et al. (1994)). It
has been observed when rodents are housed together, there
is often a decrease in food consumption by certain mem-
bers of the group causing variable weight gain/loss within the
group (Gonder and Laber (2007)). On the other hand, group
housing has shown that rodents are able to adapt better to
stress rather than when individually housed impacting weight
along with many other factors (Gonder and Laber (2007)).
One study explores how the shape of the distribution con-
sidered in a statistical test affects the outcome (Torrenté et
al. (2019)). Once they began using the distribution informa-
tion for each data set, they were able to improve the survival
predictions of cancer patients. This corresponds to studies
that showed multimodality of rodent body weights but did not
consist of different control groups. Similar to how we looked
at different levels of skewness of the skew normal distribu-
tion, a deeper look into body weight distribution may alter
the outcome of which statistical tests should be used when
evaluating those studies. A study compared the power of
the SW test, Komogorov-Smirnov, Lilliefors and Anderson-
Darling tests to detect departures from normality from sim-
ulated data (Razali and Wah (2011)). They found that the
SW test is the most powerful of the four tests for detect-
ing departures from normality, strengthening our usage of
the SW test to test for normality testing. Not only is an
investigation of the distribution of rodent body weight data
important, but it is important to understand the distribution
of any endpoint of interest. A review discusses the impor-
tance of distributional assumptions in the field of genetics
(specifically studying gene expression and regulation) it is
imperative to understand the distribution of the data being
tested in order to obtain the most accurate statistical results
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(Mar (2019)); even with large data sets. Another exam-
ple of data distribution being studied in gene expression
is a study by Church et al. (2019). This study sought to
understand different distributions common in certain patient
cohorts, further motivating our exploration of non-normality
of each species/strain/sex/dose route.

We did not remove potential outliers or influential
observations in this study. However, removal of statistical
outliers could change the results of normality tests. There
is debate on how and when to remove statistical outliers.
The removal of statistical outliers without justified cause
could make a dataset appear more normal than it is and
mask its true distribution (Millard (2019)). The removal
of outliers according to Tukey’s Outer Fences ( ) shows
up to 10% decrease in proportion of rejections of the 90-
day studies and up to 40% decrease in chronic 2-year
studies (data not shown). This is supported by the findings
of Frecka and Hopwood (1983). That study found that
the inclusion of outliers changed the parameter estimations
for the distributions of their data. Once outliers were
removed, normal distributions were seen for the same data.
On the other hand, one study argues that the removal
of extreme outliers is beneficial to the statistical analysis
of data, especially when using parametric tests (Osborne
and Overbay (2004)). Osborne and Overbay came to this
conclusion after performing multiple simulations with t-tests
and ANOVA where they compared false positive rates and
false negative rates before and after the removal of outliers.
The accuracy of themean estimates was also improved upon
the removal of outliers in their study.

Looking at chronic study body weight measurements.
This analysis also included a brief look into the distribution of
chronic (2-year) study terminal body weight measurements
by the same methods used for analysis of the 90-day
study data, but results are not shown. Chronic study
data showed more departures from normality than 90-day
data. Simulations for parametric and nonparametric testing
revealed that the tests held at least 90% power to detect 10%
difference in terminal body weight for a sample size of 25 for
F344/N male rats but held less than 55% power to detect
a 10% difference in terminal body weight for a sample size
of 25 HSD male rats and less than 20% power to detect a
10% difference in terminal body weight for a sample size
of 25 for B6C3F1 male mice. A decrease in sample size
due to mortality of rodents throughout chronic studies could
potentially increase the number of distributions that deviate
from normality in the dataset at a 2-year time point due to
increased presence of disease or death in aging animals.
In a technical report of a study involving B6C3F1 mice and
exposure to Oxazepam, a 65-75% survival rate was seen at
2 years, which is typical for the terminal sample sizes in the
dataset obtained (NTP Technical Report on the Toxicology
and Carcinogenesis. Studies of Oxazepam (CAS No. 604-

75-1) in Swiss-Webster and B6C3F1 Mice (feed studies)
(1993) ).

Future Directions. Similar to the normality assumption,
many parametric tests assume there is equal variance across
the data groups (Garson (2012)). In addition, regarding
the chronic study data, looking at interim body weight
measurements, such as at six months or one year, would
give insight on the distribution of the rodents’ body weights
throughout the study and would increase the sample size at
certain time points allowing an investigation of how variability
changes over time. A further endpoint for which to evaluate
normality is organ weight, another key variable measured
in toxicology studies for which normality is often assumed.
While we used the skew normal distribution to model
departures from normality, future studies could explore the
consequences of stronger departures from normality. Since
we have investigated the normal assumption, it would also
be beneficial to investigate the equal variance assumption
across dose groups for body weight data. It would also be
beneficial to explore whether body weight differences are
associated with design variables such as housing, diets, etc.
As mentioned in the discussion, housing and diet can play a
crucial role in the distribution of laboratory rodent body weight
measurements.
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