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is attributed to its quick proliferation and resistance to the 
limited treatment options available. Research to identify new 
therapies is hindered because SCLC is rarely identified be-
fore metastasis when surgical treatment is still an option, 
resulting in relatively few tissue samples to study (Yokouchi 
et al., 2020). Further experimentation is necessary to under-
stand its resistive mechanisms and improve current treat-
ment modalities.

Current Treatment Options for Small Cell Lung Cancer
Prescribed therapies for SCLC patients are largely depen-
dent on the stage of the cancer at the time of diagnosis. 
Fewer than 30% of patients are diagnosed with limited stage 
SCLC, in which the tumor is confined to one lung. The most 
common treatment option for these patients is chemothera-
py in combination with radiation or, less frequently, a lobec-
tomy (Du et al., 2020; Saltos & Antonia, 2020). More than 
70% of patients with SCLC are first diagnosed when the tu-
mor has spread past the hemithorax, which is classified as 
the extensive stage of the disease (Lei et al., 2020). Patients 
first identified at this late stage of the disease often receive 
a standard treatment of platinum-based chemotherapy, such 
as cisplatin or carboplatin, in combination with etoposide as 
a first line of treatment to attempt tumor repression (Waqar 
& Morgensztern, 2017).

Additional treatments for SCLC attempt to exploit the high 
frequency of DNA mutations caused by smoking. In healthy 
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Small Cell Lung Cancer: A Recalcitrant Cancer
Lung cancer currently causes the most cancer-related 
deaths in the United States, and consists of two major types: 
non-small cell lung cancer (NSCLC) and small cell lung can-
cer (SCLC; Siegel, Miller, & Jemal, 2020). The predominant 
cause of all lung cancers is smoking tobacco, but it is most 
closely associated with SCLC; 95% of SCLC cases occur 
in smokers.  SCLC comprises approximately 15% of lung 
cancer cases and has a five-year survival rate of less than 
5% (Sen, Gay, & Byers, 2018). The poor prognosis of SCLC 
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tissue, Tumor Protein 53 (TP53) regulates the cell life cycle 
by promoting apoptosis in response to stress, preventing 
the rapid proliferation of cells as seen in cancer (Mantovani, 
Collavin, & Sal, 2019). Similarly, Retinoblastoma Protein 1 
(RB1) reduces rapid cell division. Both TP53 and RB1 en-
sure arrest at the G1 and S phase to allow the cell to repair 
mutated DNA (Dyson, 2016). In SCLC, increased mutations 
in conjunction with the downregulation of TP53 and RB1 re-
sults in tumor cells with high dependence on DNA damage 
repair (DDR) mechanisms (Sen et al., 2018). Without these 
repair pathways, the tumoral DNA would be unstable, limit-
ing tumor growth.

In SCLC tissue with abnormal DNA mutations, there 
is a higher dependence on poly-ADP-ribose polymerase 
(PARP) and checkpoint kinase 1 (CHK1), two proteins that 
regulate DDR. PARP without ADP ribose binds to sites of 
single strand DNA breaks (SSB). PARylation, the gathering 
of ADP ribose at the initial polymerase, then completes the 
PARP complex, which attracts other DNA repair enzymes, 
such as ligase III, polymerase beta, and X-ray repair cross-
complementing protein 1 (XRCC1), to aid in the repair of 
DNA (Figure 1a) (Keung, Wu, & Vadgama, 2019). CHK1 also 
becomes an important DDR mechanism when TP53 and/or 
RB1 are downregulated (Figure 1c). Both PARP and CHK1 
promote DDR in cancer tissues by stopping the cell cycle at 
the G2 or M phase, making these mechanisms necessary 
for tumor cell survival (Ferry et al., 2011). PARP and CHK1 
are employed to repair the DNA in tumor cells and promote 
proliferation because the downregulation of P53 and RB1 

allows tumors to avoid normal checkpoints, increasing the 
high mutational burden in SCLC.

As a result, DDR inhibitors (DDRi) are used as treat-
ments to target specific DDR-associated proteins and were 
used to target cells in the datasets analyzed in this study 
(Figure 1b, d). PARP inhibitors (PARPi) bind to the initial 
polymerase and disrupt PARylation, resulting in PARP trap-
ping, where the polymerase is unable to repair the DNA 
and remains bound to the SSB until a double strand break 
(DSB) forms (Figure 1b). The accumulation of DSBs causes 
apoptosis in tumor cells (Keung, Wu, & Vadgama, 2019). 
Similarly, CHK1 inhibitors (CHK1i) prevent DNA repair by 
disrupting cell cycle arrest at the G2 and M phase (Ferry et 
al., 2011). Unrepaired DNA eventually results in tumor cell 
death (Figure 1d).

Adaptive Resistance to Treatment
Initially, standard therapies induce responses in about 60% 
of patients, but all treated patients relapse (Stewart et al., 
2020). The prognosis for retreatment of SCLC is dependent 
on the time between initial treatment and relapse. Patients 
who relapse after 60 days of initial chemotherapy doses are 
considered to be sensitive to treatment and can continue to 
receive standard therapies. Patients who relapse within 60 
days are considered resistant (Asai, Ohkuni, Kaneko, Ya-
maguchi, & Akihito, 2014). Only 20% of resistant patients 
respond to current treatments; 80% require new treatment 
modalities to address initial treatment failures (Stewart et al., 
2020).

Figure 1. Inhibition of DNA repair mechanisms. (a-b) Poly-ADP-ribose polymerase (PARP) a. The PARP polymerase is attracted to 
the site of the single strange break (SSB), which induces PARylation or the gathering of ADP ribose at the enzyme. The resulting complex 
then recruits other DNA repair enzymes that work with PARP to repair the SSB. b. The PARP inhibitor binds to a domain of the polymerase 
to prevent PARylation and the recruitment of other enzymes, evading DNA repair. PARP trapping, where the polymerase is tightly binding 
to the SSB, occurs until a double strand break forms. Apoptosis is a result of accumulating unrepaired DNA. (Keung, Wu, & Vadgama, 
2019) (c-d) Checkpoint Kinase 1 (CHK1) c. Ubiquitous loss of TP53 and RB1 prevents cell cycle from stopping at the G1 and S phase 
for DNA repair. CHK1 is necessary to stop cell cycle for DNA repair at the G2 or M phase. d. The CHK1 inhibitor deactivates CHK1. Cell 
cycle arrest never occurs and DNA is not repaired, resulting in cell death. (Ferry et al., 2011)
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There is reason to believe that treatment resistance may 
be a result of tumor heterogeneity. Variety in the individual 
tumor cells renders treatments ineffective when the thera-
peutic target is not present in a cell. As a result, cells lacking 
the therapeutic target will continue to proliferate. Treatments 
targeting PARP have been observed to be less efficient in 
the presence of homologous recombination, an alternative 
DNA repair pathway (Sen et al., 2018). Though PARPi can 
induce DNA damage, homologous recombination can repair 
DSBs, rendering the DDRi ineffective (Li & Heyer, 2008). Va-
riety in the expression of vascular endothelial growth factor 
(VEGF) receptors have also been observed in SCLC. Drugs 
that target VEGF receptors initially delay angiogenesis, but 
cells without these receptors continue to proliferate and form 
new tumor blood vessels. The presence of other angiogenic 
stimulants like basic fibroblast growth factor makes VEGF 
an unsuitable target in SCLC (Kerbel, 2008). In a similar 
manner, heterogeneous expression of genes among dif-
ferent cell types also contribute to resistance. In a recent 
study analyzing xenografts of SCLC, varying transcription-
al expression of genes involved in proliferation -- NOTCH 
pathway genes, MYC family genes, AURKA, AURKB, and 
ASCL1 -- was noted in treatment resistant tissue (Stewart 
et al., 2020). 

Tumor heterogeneity is also present on the cellular level 
in relapsed SCLC, a result of  upregulated epithelial mesen-
chymal transitions (EMTs). EMTs transform epithelial cells to 
mobilized mesenchymal stem cells (Cañadas et al., 2013). 
These mesenchymal stem cells and rare populations of 
cancer stem cells differentiate into various cell types, which 
move throughout the body as circulating tumor cells (CTCs) 
(Jin, Jin, & Kim, 2017; Kerbel, 2008). CTCs intravasate and 
extravasate blood vessels, further increasing treatment re-
fraction as the stem cells metastasize and differentiate into 
different cell types (González-Silva, Quevedo, & Varela, 
2020). This observed variety on the transcriptional and cellu-
lar level increases the difficulty of targeting and suppressing 
SCLC. Current treatments for SCLC are designed to treat 
the cancer in a homologous manner, and thus are of limited 
efficacy because cellular tumor heterogeneity frequently re-
sults in treatment refraction. Studying specific genes associ-
ated with such resistive mechanisms would allow individu-
alized treatment for resistant patients based on their gene 
expression.

Objective: Rensensitizing Tumors to Treatment
Researchers have conducted clinical trials to test drugs 
with potential resensitizing properties. Topotecan has been 
used as a second line of treatment after resistance, though 
a median response period of less than four months and ad-
verse side effects including weakened immune system and 
anemia have encouraged further research for other treat-
ments (Ready et al., 2019). In August of 2018, the FDA-
approved immunotherapy, nivolumab, was reported to have 

a response rate of about 10% in resistant SCLC tissue. A 
combination of nivolumab and another immunotherapy, ipi-
limumab, provided a high response rate, but the clinical trial 
was discontinued after cytotoxicity caused fatal outcomes. 
Another immunotherapy, pembrolizumab, was approved in 
June of 2019 by the FDA with a 19.3% response rate. Both 
nivolumab and pembrolizumab did not significantly improve 
overall survival in patients, demanding additional studies on 
treatment refraction as efforts to resensitize the majority of 
resistant tumors to treatment have been unsuccessful and 
survival rates remain low (Saltos & Antonia, 2020; Sen, Gay, 
& Byers, 2018). Current DDRi treatments become less effec-
tive after relapse, necessitating further research on mecha-
nisms driving treatment refraction.

Thus, this study aims to identify novel genes that can 
target resistant SCLC cells, further the understanding of 
SCLC resistive mechanisms, and lead to the improvement 
of SCLC treatments through analyzing scRNA Seq datas-
ets. In recent years, the Gene Expression Omnibus (GEO), 
which is supported by the National Center for Biotechnology 
Information (NCBI), has provided a repository for scientists 
to publicly share sequenced data. Datasets of untreated 
CTC-derived xenografts as well as DDRi treated xenografts 
were evaluated and analyzed in this study. These datasets 
included cells treated with PARPi talazoparib and CHK1i 
prexasertib. Untreated, which served as the control group, 
and treated datasets were analyzed in this study to discern 
significantly upregulated genes and pathways in resistive 
SCLC cells from upregulated biomarkers in SCLC cells that 
have not been treated.

The researchers who deposited these datasets have not 
performed deep analysis of these datasets obtained through 
scRNA Seq (Stewart et al., 2020). In contrast to bulk RNA 
sequencing, scRNA Seq allows the in depth analysis of gene 
expression of individual cells and comparisons between 
cells (Leucken & Theis, 2019; Hwang, Lee, & Bang, 2018). 
The complexity of scRNA Seq has provided this study with 
a comprehensive understanding of heterogeneous, DDRi-
treated SCLC samples through upregulated pathways iden-
tified in GSEA and differentially expressed genes identified 
in R Studio and studied using Gene Expression Profiling In-
teractive Analysis 2 (GEPIA2) (http://gepia2.cancer-pku.cn). 

Further insight into mechanisms driving the develop-
ment of treatment refraction through this study’s analyses 
can identify genes associated with tumor growth in resistive 
SCLC. Through future experimentation, identified genes can 
be downregulated to verify their role in treatment resistance 
and possibly be targeted in future medication to improve 
treatments for resistant SCLC patients

METHODS

Data Acquisition
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The current study used data solely from the Stewart et al. 
2020 study obtained through the GEO repository (https://
www.ncbi.nlm.nih.gov/geo/). In their study, Stewart et al. in-
jected CTC-derived xenografts (CDXs) into the flank of mice 
and resected them after reaching the threshold volume (n = 
500-800mm3). Stewart et al. then dissociated the CDXs from 
the mice to isolate human cells, and scRNA Seq was per-
formed. This study utilized the datasets from the Stewart et 
al. 2020 study and analyzed all data using a MacBook Pro.

Although three of each differentially, DDRi-treated CDX 
samples were available, all datasets were not analyzed due 
to the limited processing power of the MacBook Pro used in 
this study. The limitations of the data available as well as the 
tools used for analyses are considered under the limitations 
section. Untreated CDX samples (n = 2), talazoparib-treated 
CDX samples (n = 2), and prexasertib-treated CDX samples 
(n = 1), all of which were derived from patient SC4, were 
analyzed. Only datasets from patient SC4 were treated with 
DDRi and, thus, used in this study. Patient SC4 received one 
cycle of platinum-based chemotherapy and was concluded 
to be sensitive to treatment. Datasets were chosen to repre-
sent the SCLC tumors before and after treatment refraction 
to DDRi.

Quality Control
In this study, RStudio (V. 1.3.959) was used to conduct qual-
ity control of datasets, cluster data, and visualize differen-
tially expressed genes. The ggplot2 and cowplot packages 
were used in conjunction to create figures from the data. The 
Seurat and dplyr packages were used analysis of the scRNA 
Seq datasets, allowing for manipulating complex data, clus-
tering cells, and quality control.

Multiple steps were first taken using the Seurat, ggplot2, 
cowplot, and dplyr packages in RStudio to ensure the pres-
ence of only high quality cells in the analysis of the datasets. 
Cells with fewer than 200 genes and genes expressed in 
fewer than three cells were not analyzed. The percentage 
of mitochondrial DNA (mtDNA) and number of RNA counts 
of each cell were visualized in a violin plot. High expression 
of mtDNA, which is generally seen when a nucleus has rup-
tured, suggests poor quality and dying cells, which should 
not be included in the analysis of the dataset. High RNA 

counts also suggest the presence of sampling noise from 
doublets or cells that represent the transcriptome of two 
cells. Thresholds were independently chosen for each data-
set based on the distribution seen in the violin plot (Table 1).

Data Clustering
Data clustering was performed in RStudio using the Seur-
at, ggplot2, cowplot, and dplyr packages to identify vari-
ous cell clusters involved in different biological processes. 
Untreated samples GSM4104153 and GSM4104154 were 
integrated with talazoparib-treated samples GSM4104160 
and GSM4104151 for analysis of pathways and genes up-
regulated in resistant PARPi SCLC cells. Untreated sample 
GSM4104153 and prexasertib-treated sample GSM4104158 
were integrated for analysis of pathways and genes upregu-
lated in resistant CHK1i SCLC cells. Equal amounts of un-
treated and treated samples were integrated to ensure simi-
lar sample sizes.

Principal component analysis was performed on both in-
tegrated datasets to identify the 40 most differential dimen-
sions. Dimensionality reduction was necessary to present 
the data in two-dimensional plots. An elbow plot was con-
structed to demonstrate the variance of each principal com-
ponent. The first 35 dimensions in both integrated datasets 
were the most differential relative to one another and chosen 
for further analysis. A uniform manifold approximation and 
projection (UMAP) plot was then constructed to cluster simi-
lar cells and visualize the heterogeneity in the SCLC tissue.

GSEA
GSEA was performed to identify enriched pathways that may 
play a role in treatment refraction. The hallmark gene sets 
from the Molecular Signatures Database (MSigDB) were 
used to identify pathways in the datasets for all GSEA. Phe-
notypic permutations (n = 1000) were used in all analyses to 
increase the precision of calculated p values. The remaining 
parameters for GSEA were set to default: weighted enrich-
ment statistic, Signal2Noise metric for ranking genes, and 
real gene list sorting mode. Enrichment scores (ES) were 
calculated through a running-sum statistic that uses a ranked 
list of genes from the loaded dataset and increases when a 
gene from the list is present in the pathway being analyzed. 

Dataset GSM4104153 GSM4104154 GSM4104160 GSM4104161 GSM4104158

Treatment Untreated Untreated Talazoparib Talazoparib Prexasertib

Percentage of mtDNA n < 10 n < 15 n < 10 n < 10 n < 10

RNA counts n < 30000 n < 40000 n < 40000 n < 30000 n < 40000

Total number of high 
quality cells

n = 4848 n = 3490 n = 2428 n = 2428 n = 4011

Table 1. Quality control thresholds for each dataset. The percentage of mitochondrial DNA (mtDNA) and number of RNA counts were 
accounted for when classifying poor quality cells that would be excluded from analysis in this study. Cells remaining after removing poor 
quality cells were classified as high quality cells and are defined by the thresholds shown.



JYI | February 2022 | Vol. 41 Issue 2
© Sie et al., 2022

11

Journal of Young Investigators Research

Normalized enrichment scores (NES) consider the testing 
of multiple hypotheses and were used in this study (Sub-
ramanian et al., 2005). Statistical significance of NES was 

determined by the p value (p < 0.001), false discovery rate 
(FDR < 0.001), and familywise-error rate (FWER < 0.005).

GSEA was performed on each cluster of the talazopar-

Figure 2. Heterogeneous clusters. a) UMAP plot of the talazoparib-integrated dataset. b) UMAP plot of prexasertib-integrated dataset. 
a-b) Presence of 7 individual clusters in both UMAP plots suggest tumoral heterogeneity. c) Bar graph representing enriched gene sets 
in cluster 1 of the talazoparib-integrated dataset. d) Bar graph representing enriched gene sets in cluster 2 of the prexasertib-integrated 
dataset. c-d) MYC genes and oxidative phosphorylation were upregulated in one cluster of each treatment type, suggesting treatment re-
sistance. e) Bar graph representing enriched gene sets in cluster 3 of talazoparib-integrated dataset.  f) Bar graph representing enriched 
gene sets in cluster 0 of prexasertib-integrated dataset. e-f) Apoptosis and inflammatory response were upregulated in one cluster of each 
treatment types, implying successful treatment response. (p < 0.001, FDR < 0,001, FWER < 0.005)
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ib-integrated and prexasertib-integrated datasets to identify 
upregulated gene sets and better understand the various 
biological processes present. GSEA was also performed to 
identify upregulated gene sets in treated compared to un-
treated cells.

Leading Edge Subset Analysis
Common genes contributing to shared GSEA enriched 
pathways between treatments were identified and further 
analyzed for their role in SCLC treatment refraction. Leading 
edge subset genes were further presented in dot plots and 
violin plots using Seurat, dyplr, ggplot2, and cowplot pack-
ages in RStudio to demonstrate differential expression be-
tween treatment conditions.

Survival analysis was also performed on each identi-
fied gene using GEPIA2. As established by Tang, Kang, Li, 
Chen, & Zhang in 2019, GEPIA2 runs the Mantel-Cox test 
and determines the survival effects of the high and low ex-
pression of selected genes using information from The Can-
cer Genome Atlas (TCGA) and Genotype-Tissue Expression 

project. Databases used in GEPIA2 do not include SCLC 
data, but survival analysis was still performed to determine 
the significance (p < 0.05) of identified genes on the survival 
rates in other cancers.

RESULTS

Data Clustering: Identifying Heterogeneous Clusters
Dimensionality reduction and clustering was performed and 
portrayed on a UMAP plot to visualize the heterogeneity in 
the talazoparib and prexasertib-integrated samples. Seven 
clusters were identified in each integrated dataset as dis-
played by the variously colored clusters in Figure 2. GSEA 
was then performed to examine the gene sets uniquely pres-
ent in individual clusters of both integrated datasets. Clus-
ter 1 of the talazoparib-integrated dataset and cluster 2 of 
the prexasertib-integrated dataset shared three hallmark 
gene sets: both MYC targets and oxidative phosphorylation. 
Cluster 3 of the talazoparib-integrated dataset and cluster 
0 of the prexasertib-integrated dataset shared two hallmark 

Figure 3. Enriched GSEA pathways shared between talazoparib and prexasertib datasets. a) Bar graph of the top ten upregulated 
gene sets in the talazoparib-treated tumor cells. b) Bar graph of the top ten upregulated gene sets in the prexasertib-treated tumor cells. 
a-b) Enrichment of various biological pathways indicates heterogeneity in the SCLC environment (p < 0.001, FDR < 0.001, FWER < 
0.005). c) Enrichment plot of the ROS and TGF-beta signaling pathways in talazoparib-treated cells from GSEA. d) Enrichment plot of 
the ROS and TGF-beta signaling pathways in prexasertib-treated cells from GSEA. c-d) Enrichment plots are heavily skewed to the left, 
indicating upregulation in the treated conditions. 
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genes sets: apoptosis and inflammatory response.

Gene Set Enrichment Analysis (GSEA)
GSEA was performed to examine the gene sets enriched in 
the treated condition versus the untreated condition of both 
integrated datasets (Figure 3). The reactive oxygen species 
(ROS) pathway and TGF-beta signaling gene set were up-
regulated in both treatment types as shown by the green line 
skewed to the right in Figure 3c and 3d (p < 0.001, FDR < 
0.001, FWER < 0.005).

Leading Edge Subset Analysis
The leading edge subset genes contributing to the upregu-
lation of the ROS pathway of both talazoparib-treated and 
prexasertib-treated datasets were examined in RStudio for 
differential expression. Four differentially-expressed, shared 
genes between both treatment types were identified: TXN, 
TXNRD1, NDUFB4, and LAMTOR5 (Figure 4). All common 
genes were studied in GEPIA2 for their impact on survival, 

but downregulation of TXN was the only gene to show sig-
nificant (p < 0.05) survival benefit in lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC).

The leading edge subset genes contributing to the up-
regulation of the TGF-beta signaling pathway of both ta-
lazoparib and prexasertib datasets were also examined 
in RStudio for differential expression (Figure 5). Three 
shared genes between both treatment types were identified: 
HDAC1, CTNNB1, and SLC20A1.

DISCUSSION
This study identified genes previously unassociated with 
SCLC that may contribute to the development of resistance 
in DDRi-treated SCLC through bioinformatic analyses of up-
regulated pathways in resistant tumor cells. Public datasets 
were analyzed with no intended results but with the purpose 
of furthering current understanding of resistant SCLC.

Figure 4. Differential expression of leading edge subset genes associated with the reactive oxygen species pathway. a) Dot plot 
of the first ten genes in the leading edge subset of the reactive oxygen species pathway in the talazoparib-treated samples, and violin 
plots of TXN, TXNRD1, NDUFB4, and LAMTOR5. b) Dot plot of the first ten genes in the leading edge subset of the reactive oxygen 
species pathway in the prexasertib-treated samples, and violin plots of TXN, TXNRD1, NDUFB4, and LAMTOR5. a-b) TXN, TXNRD1, 
NDUFB4, and LAMTOR5 were common, highly contributive genes in the reactive oxygen species pathways of both treatment types. 
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Identifying Hetereogenous Clusters
Seven clusters were identified in each integrated dataset, 
suggesting the presence of heterogeneous biological pro-
cesses as cells were clustered based on similar gene ex-
pression (Figure 2; Shue et al., 2018). The enriched gene 
sets present in the GSEA of individual clusters demonstrate 
heterogeneity in treatment response. The upregulation of 
MYC oncogenes, which have been correlated to cell prolif-
eration, in one individual cluster from both integrated dataset 
implies treatment resistance (Bottger et al., 2020). Oxidative 
phosphorylation enrichment further supports treatment re-
fractory by suggesting increased glycolysis to support tumor 
growth (Rodriguez-Enriquez, 2019). In contrast, the shared 
upregulation of apoptosis and inflammatory response in-
dicates some successful treatment response (Spigel and 
Socinski, 2013). Indications of treatment resistance and 

response in various individual clusters of both talazoparib-
integrated and prexasertib-integrated datasets support cur-
rent understandings of the heterogeneity in SCLC.

Common GSEA Results Between Talazoparib and Prex-
asertib Datasets
The ROS and TGF-beta signaling gene sets were upregulat-
ed in both treatment types (p < 0.001, FDR < 0.001, FWER 
< 0.005). In the tumor environment, the ROS pathway has 
been associated with epidermal growth factor receptors, 
promoting proliferation, differentiation, and metastasis, but 
excessive ROS can also cause cell death. (Weng et al., 
2018). The TGF-beta signaling pathway has also been cor-
related with tumor survival through increased migration and 
EMTs and tumor suppression through apoptosis (Colak and 
Dijke, 2017). Current understanding of the ROS and TGF-
beta signaling pathways support the plausibility of their rela-

Figure 5. Differential expression of leading edge subset genes associated with the TGF-beta signaling pathway. a) Dot plot of 
the first 10 genes in the leading edge subset of the TGF-beta signaling pathway in the talazoparib-treated samples and violin plots of 
HDAC1, CTNNB1, and SLC20A1. b) Dot plot of the first ten genes in the leading edge subset of the TGF-beta signaling pathway in the 
prexasertib-treated samples and violin plots of HDAC1, CTNNB1, and SLC20A1. a-b) HDAC1, CTNNB1, and SLC20A1 were common, 
highly contributive genes in the TGF-beta signaling of both treatment types. 
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tion to the development of resistance in SCLC.

Shared Leading Edge Subset Genes
ROS Pathway
There were four leading edge subset genes contributing to 
the upregulation of the ROS pathway of both talazoparib-
treated and prexasertib-treated datasets: TXN, TXNRD1, 
NDUFB4, and LAMTOR5 (Figure 4). Upregulation of these 
four common genes may be a result of oxidative stress as 
has been noted in previous research (Zhang et al., 2019; 
Zhu et al., 2019; O’Malley et al., 2020). TXN and TXNRD1 
maintain reductive pathways when imbalanced amounts of 
free radicals disrupt homeostasis. Previous studies have 
correlated high expression of TXN and TXNRD1 with poor 
overall survival in breast, pancreatic, head, neck, prostate, 
and colon cancers (Stafford et al., 2018). Upregulation of 
TXN and TXNRD1 has also been observed to increase re-
sistivity to cisplatin chemotherapy in NSCLC (Zhu et al., 
2019). The NDUFB4 gene codes for a NADH dehydroge-
nase, which is involved in mitochondrial activities. Increased 
production of ROS and mitochondrial dysfunction results in 
upregulated NDUFB4 and evasion of apoptosis (O’Malley et 
al., 2020; Ghosh & Girigoswmani, 2008). LAMTOR5 trans-

lates a protein that interacts with transcription factor NF-kB 
to induce cell proliferation through mitogen-activated protein 
kinase (MAPK) and mammalian target of rapamycin (mTOR; 
Zhang et al., 2019). Past research has correlated increased 
LAMTOR5 expression with the activation of GLUT1 in liver 
cancer, increasing glucose metabolism to support tumor 
growth (Zhou et al., 2019).

Survival analysis was also performed in GEPIA2 to de-
termine the role of identified genes in the context of other 
cancers. Downregulation of TXN was the only gene to show 
significant (p < 0.05) survival benefit in lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC; Figure 
6). Current understanding of TXN, TXNRD1, NDUFB4, and 
LAMTOR5 in cancer environments in combination with their 
prominent presence in the ROS pathway of treated samples 
here suggest a notable role of these identified genes in re-
sistance against treatment.
TGF-Beta Signaling
There were three leading edge subset genes contributing to 
the upregulation of the TGF-beta signaling pathway of both 
talazoparib and prexasertib datasets: HDAC1, CTNNB1, and 
SLC20A1 (Figure 5). Upregulation of HDAC1, CTNNB1, and 
SLC20A1 induce different aspects of the TGF-beta signaling 
pathway to promote cell growth and treatment resistance. 
HDAC1 is a histone deacetylase that collaborates with the 
acetylation of histone 3 to promote EMTs, increasing tumoral 
heterogeneity and metastasis (Qiao et al., 2020). Upregula-
tion of HDAC1 has also been noted to prevent the transcrip-
tion of apoptosis stimulating protein of p53-2 (ASPP2), fos-
tering cell proliferation (Li et al., 2018 A). CTNNB1 produces 
β-catenin which regulates cell adhesion and suppression of 
immune responses in cancers (Montepreville et al., 2020). 
Overexpression of CTNNB1 has also been reported to wors-
en overall survival in acute myeloid leukemia, colorectal, 
breast, and liver cancer by increased cell differentiation and 
inhibition of apoptosis (Li et al., 2018 B). SLC20A1 induces 
upregulation of NCAD, VEGF, and VIM, which are genes 
known for promoting tumor growth through angiogenesis. 
Increased expression of SLC20A1 has also been correlated 
with increased tumor size, decreased tumor necrosis fac-
tor-induced apoptosis, and worse survival in breast cancer 
(Guo and Wang, 2008; Li et al., 2019). The known function 
of HDAC1, CTNNB1, and SLC20A1 as well as their promi-
nence in the TGF-beta signaling pathway of talazoparib and 
prexasertib-treated datasets in this study support their po-
tential role as biomarkers for treatment resistance in SCLC.

Limitations
Several limitations were present in conducting this study. 
Datasets used from the Stewart et. al 2020 study were all 
derived from CDXs created with CTCs of one patient, which 
raises the concern of generalizability of the results to a larger 
population. Although this limitation was controlled with strict 
thresholds for statistical significance, future studies should 

Figure 6. Survival analysis of TXN in lung adenocarcinoma 
and lung squamous cell carcinoma. Upregulation of TXN in the 
high TXN group shows a significant, negative impact on survival 
outcome in lung adenocarcinoma and lung squamous cell carci-
noma compared to the low TXN group. Although previous studies 
have not correlated upregulated TXN to the survival outcome of 
SCLC, this analysis supports the possibility that there exists a rela-
tionship. Analysis was performed using GEPIA2 (p < 0.03).
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include samples from a larger population of individuals. The 
limited processing power of the Macbook Pro used for analy-
ses in this study was also a restricting factor as not all avail-
able datasets could be analyzed. The results could have 
been altered if all available datasets were analyzed. Future 
studies should utilize more datasets and a device with the 
ability to analyze all datasets desired.

Future Investigations
The role of identified genes in DDRi-resistant SCLC can be 
further validated in future investigations with therapeutic tar-
gets. TXN and TXNRD1 can be downregulated using FDA-
approved arsenic trioxide, which is in current clinical trials 
for leukemia, basal cell cancer, and neuroblastoma (Arnér, 
2019). Auranofin, another drug targeting TXN and TXNRD1, 
is in clinical trials for ovarian cancer, NSCLC, and SCLC to 
inhibit PKCι and mTOR (Ross & Lou, 2020).  HDAC1 can 
be targeted using FDA-approved vorinostat, which has been 
tested in renal cell carcinoma (Li et al., 2018 A; Richon, 
2006). NDUFB4, LAMTOR5, CTNNB1, and SLC20A1 can 
be targeted using clustered regularly interspaced short 
palindromic repeats (CRISPR) and the Cas9 protein. Engi-
neered guide RNAs can be used to target and downregulate 
the desired gene (Jeong et al., 2020; Xu et al., 2018). The 
knockout of genes established in this study should also be 
examined in SCLC resistant tumors treated with other thera-
pies. Heterogeneity in SCLC promotes a variety of resistive 
mechanisms as a response to specific treatments. The role 
of TXN, TXNRD1, NDUFB4, LAMTOR5, CTNNB1, and SL-
C20A1 should be investigated in differentially treated tumors 
to understand their potential as resensitizing therapeutic tar-
gets (Stewart et al., 2020).

Conclusion
Using bioinformatic analyses, this study identified ROS and 
the TGF-beta signaling pathways as well as specific genes 
previously unassociated with resistant SCLC as contributors 
to SCLC treatment resistance. TXN, TXNRD1, NDUFB4, 
and LAMTOR5 are upregulated in the presence of oxidative 
stress, which may have been a result of treatment response 
to the DDRi, and inadvertently increase treatment refractory 
through cell proliferation. Upregulation of HDAC1, CTNNB1, 
and SLC20A1 in the TGF-beta signaling pathway may also 
indicate resistance to treatment through increased EMTs, 
inhibition of apoptosis, and suppressed immune response. 
These identified genes may serve as therapeutic targets in 
future treatments as standard treatment for SCLC has not 
improved in recent decades and median survival after di-
agnosis is less than two years (Mohan et al., 2020; Koinis, 
Kotsakis, & Georgoulias, 2016). Although additional explora-
tion is required, this study provides a further understanding 
of the resistive mechanisms of SCLC and has the potential 
to improve treatments as well as prognosis for people with 
resistant SCLC.
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