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With the advent of many new machine learning packages 
and tools being open-sourced, there has been increased 
popularity in machine learning applications among various 
industries. From predicting the best routes for pharmaceu-
tical drug delivery to gaining insights on stock movements 
using prior financial data, machine learning has been ev-
er-expanding for the past few decades. Although there has 
been an increase in its utilization, there are still many who 
do not know the underlying math used in these algorithms.

WHY IS KNOWING THE MATH IMPORTANT?
With its vast applications, machine learning is affecting so 
many industries with such great magnitude. Many of these 
solutions entail different approaches and choosing the best 
one is up to the data scientist. The algorithm selection pro-
cess should not simply be limited to its efficiency, but we 
must rather understand how and why the algorithm is doing 
what it is doing. For that reason, anyone with remote appli-
cations of machine learning in their industry should at least 
be able to interpret these algorithms based on the quality of 
math and parameter settings used.

WHAT DO I NEED TO KNOW ABOUT LINEAR AL-
GEBRA?
Although I can not condense a vast field such as Linear Al-
gebra into a small section of an article, I can introduce how 
linear algebra is used in machine learning to pique the inter-
est of readers.

Thus, we start the discussion with matrices, the central 
component to machine learning algorithms. A matrix is sim-
ply an array of numbers.

It can have as many columns and rows as we want. 
Usually, matrices are used as data representations. Many 
different mathematical manipulations can be performed on 
them, such as multiplication or division. They can also be 
transposed: switching the columns and rows with one an-
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other. We can even perform matrix algebra, where we attach 
matrices with variables and create linear models.

A matrix with one row or column is defined as a vector. 
These have special utilities for matrix analysis as well. We 
can take a set of vectors that represent different aspects of 
data and check for linear independence. Vectors are linearly 
independent only when we cannot write them as weighted 
combinations of previous vectors. This is important to check 
whether different parts of the data are related or indepen-
dent of each other.

Another important concept in matrix algebra is eigen-
vectors and eigenvalues. This creates the foundation for 
principal component analysis, which is used to reduce di-
mensionality of datasets. Suppose we have matrix A with 3 
columns and 3 rows. We take matrix A and multiply it with 
matrix B, which has 3 columns and 1 row. If this results in a 
vector multiplied by some constant (see image below), then 
we can consider the multiplied vector as an eigenvector of 
matrix A. The resulting constant is called the eigenvalue. 
This may seem quite convoluted, but at least having some 
idea of these concepts will help with understanding their 
broader uses in machine learning later on.

Although the simple definition of eigenvectors and ei-
genvalues do not really have a mathematical use for our 
purposes, their properties are impactful for their frequent ap-
plications in statistics.

THEN HOW DO WE APPLY LINEAR ALGEBRA?
The value in understanding the above concepts may be high-
lighted if we go through an example of their utility. My current 
research analyzes brain lesions and neurodegeneration with 
neuroimaging. Using machine learning and other statistical 
algorithms, I am able to analyze the data and more precisely 
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identify changes in the brain. Analyzing the neuroimaging 
data requires a shift in perspective to understand how the 
computer views the data.

The images from MRI, the modality that I use, are just 
bundles of pixels that we find meaning from. They provide 
information on the brain and various anatomical structures 
within it. In the simplest of terms, this information can be 
stored as discrete, smaller representations. The computer 
just identifies numbers of pixelated squares to represent an 
image. This image can be broken down into a matrix based 
on these specific numbers assigned from the light-dark 
spectrum. After we break this image into a pixel, if we add 
the time dimension as multiple images taken in succession, 
then we have 3-dimensional data. Each “pixel” in this dimen-
sion is called a voxel. Each voxel for the MRI can be stored 
as a matrix entity that we can manipulate as we discussed 
before.

The type of MRI data that I analyze is called diffusion 
tensor imaging (DTI), which measures the random motion of 
water molecules in a fluid to determine brain structure. The 

computer views image information as matrices of numbers 
organized in a certain manner. I can assess the direction of 
water molecules from something called b-vectors. While the 
images are being collected from a patient, the MRI machine 
can orient in different directions to collect information on the 
paths for water molecule diffusion. The b-vector then allows 
me to identify the volume of diffusion in the x-, y-, and z- di-
rections (3-dimensional space). When I know the direction 
and level of diffusion of water molecules, then I can predict 
the gradient of diffusion along various signals.

This is where we can identify the application of eigen-
value and eigenvector properties. As we discussed, the flow 
direction of water molecules is represented by b-vectors. 
The direction of this energy is simply the eigenvector of the 
matrix we create. The magnitude of strength of the water 
molecule diffusion is the eigenvalue for our image matrix. 
Knowing this information, I can then manipulate and use 
their mathematical properties to analyze DTI with machine 
learning.

CONCLUDING REMARKS
Linear Algebra allows us to break down these complicated 
concepts into mathematical form. Having a universal lan-
guage like this to analyze our data makes machine learning 
not only more accessible to other industries, but also more 
understandable. I hope that my explanation shared my pas-
sions as well as inspired some of the readers to want to 
learn more about the field and its relevant math. Machine 
learning is a beautiful way for us to make educated observa-
tions about how our world works. As more people incorpo-
rate it into more industries, we can share diverse insights 
with machine learning.

REFERENCES
https://www.youtube.com/watch?v=Rt6beTKDtqY
https://cnx.org/contents/fpkWedRh@2.3:-bqFVN8e@6/Linear-Algebra-

Matrices
https://medium.com/sho-jp/linear-algebra-part-6-eigenvalues-and-eigen-

vectors-35365dc4365a
h t t p s : / / i m a g e s . m e d i c a l d a i l y. c o m / s i t e s / m e d i c a l d a i l y. c o m /

files/2013/08/04/0/74/7436.png
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202
https://pubmed.ncbi.nlm.nih.gov/28765809/
https://andysbrainbook.readthedocs.io/en/latest/MRtrix/MRtrix_Course/

MRtrix_00_Diffusion_Overview.html

https://pubmed.ncbi.nlm.nih.gov/28765809/
https://pubmed.ncbi.nlm.nih.gov/28765809/
https://andysbrainbook.readthedocs.io/en/latest/MRtrix/MRtrix_Course/MRtrix_00_Diffusion_Overview.html

