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is far from the only electoral system. Other single-winner 
algorithms include Approval, Borda Count, Copeland, In-
stant-Runoff, Kemeny-Young, Score Voting, Ranked Pairs, 
and Schulze Sequential Dropping. Of these alternative al-
gorithms, we choose to focus on the Instant-Runoff Voting 
algorithm (IRV). It is used in many elections, including the 
city elections in Berkeley, California and Cambridge, Mas-
sachusetts, the state elections in Maine, and the presiden-
tial caucuses in Nevada. Under the IRV system, voters still 
express a first choice, but also rank the other candidates in 
order of preference in the event that their first-choice candi-
date is eliminated. The existence of so many different single-
winner algorithms highlight the fundamental challenge with 
electoral systems. The selection of a winner may depend 
as much on the choice of algorithm as the will of the voters. 
This is best demonstrated with the example of a close race 
between three candidates, with one candidate winning un-
der Plurality, but a separate candidate gaining enough votes 
to win through IRV.

Underlying Structure of Voter Ballots
In this study, we evaluate the outcomes of a 3-candidate 
election. The candidates are identified as A, B, and C. Each 
voter submits a ballot on which they designate their first, 
second, and third choice preferences. Alternatively, we can 
describe voters as designating their first and second choice 
candidates, since their third choice is the remaining candi-
date by default. Given three candidates, there are a total of 
3, or six, possible orderings of these candidates, which rep-
resent six unique ballot types as shown in Table 1.

INTRODUCTION
Elections are a social selection structure in which voters ex-
press their preferences for a set of candidates. In the most 
notable cases, such as elections for president or governor, 
there can only be a single winner. Therefore, voters cast bal-
lots that voice their opinions on which candidate should win, 
and an algorithm determines which candidate wins based 
on those votes. The Plurality algorithm is commonly used 
to convert voter preferences into a declared winner. It is 
so common that, to many voters, it is synonymous with the 
very concept of an election (Richie, 2004). In this algorithm, 
each voter voices a single preference, and the candidate 
with the most votes wins the election. The Plurality algorithm 
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hood that the algorithms might produce different results. This study implies that ballot dispersion is a key driver of potential 
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Voting algorithms do not always elect the same candidate. 
For example, consider the algorithm for Instant-Runoff Vot-
ing shown in Table 2, and the series of ballots shown in Table 
3. Candidate A wins under Plurality. However, under Instant-
Runoff Voting, Candidate B is eliminated in the first round,
and Candidate C gains 125 more votes than Candidate A.
This makes the final vote 475 to 525, electing Candidate C
as opposed to Candidate A.

Each system has its benefits. If a majority of voters only 
prefer one first-choice candidate and strongly oppose the 
other candidates, then the candidate that most voters prefer 
will be elected through Plurality voting. However, if voters 
have very small differences in their preferences between 
candidates, we would expect Instant-Runoff Voting to elect 
the candidate who is preferred on balance.

Plurality vs. Instant-Runoff Voting Algorithms
In a Plurality voting system, each voter is given a ballot from 
which they must choose one candidate. The candidate that 
receives the most votes wins, regardless of whether or not 
they obtain a majority (i.e., 50% or more of the vote). In an 
Instant-Runoff Voting (IRV) system with full preferential vot-
ing, voters are given a ballot on which they indicate a list of 
candidates in their preferred order. The winner is determined 
by the algorithm outlined in Table 2.

The Plurality algorithm, though extremely common, suf-
fers from several major disadvantages (Richie, 2004). First, 
it explicitly ignores all voter preference information beyond 
the first preference. By doing so, it simplifies the mechanics 
of the election at the expense of producing an outcome that 
may not fully incorporate voter desires. Second, it encour-
ages voters to think strategically about their votes, since vot-
ing for a candidate without adequate support might have the 
unintended effect of helping a less desired candidate win. 
This is known as the “spoiler” problem. Third, the Plurality 
algorithm may encourage infighting among candidates with 
otherwise common policy objectives and natural constituen-
cies. The IRV algorithm, on the other hand, attempts to ad-
dress these concerns by incorporating more information on 
voter preferences and cross-correlations in support among 
candidates. Under this algorithm, voters express not only 
a first choice as in the Plurality algorithm, but an ordered 
list of preferred candidates (Table 1) which may factor into 
the determination of a winner. This frees voters from having 
to guess the behavior of other voters and might encourage 
candidates with similar natural constituencies to work with 
rather than against each other.

Many studies comparing the Plurality and IRV algo-
rithms have focused on voter behavior (Burnett and Kogan, 
2015) or have presented qualitative arguments as to why 
candidates might run different styles of campaigns as a re-
sult of different electoral structures (Donovan et al., 2016). 
There have been relatively few studies that use numerical 
simulations to test the behavior of election algorithms under 

Table 1. Potential Ranked Choice Ballot Permutations in a 
Three Candidate Election.
Unique Ballot 
Permutations

ABC ACB BAC BCA CAB CBA

First Choice A A B B C C

Second Choice B C A C A B
Third Choice C B C A B A

Table 2. Instant-Runoff Voting Algorithm.
Instant-Runoff Voting (IRV) Algorithm

1. Determine the candidate Ck that received the least first-place
votes.

2. Remove Ck from the race.
3. Shift all preferences so that the remaining candidates are ranked

in preferred order on each ballot excluding Ck .
4. Repeat steps 1-3 until one candidate remains. The final remaining

candidate is the winner of the election.

Table 3. Example Mock Election Using IRV Voting Algorithm.
Votes Cast by Ballot Permutation

Ballot ABC ACB BAC BCA CAB CBA

Votes 200 200 75 200 150 175

Percentage of 
Total Votes 
Cast

20% 20% 7.5% 20% 15% 17.5%

First Round Results
Candidate A B C
Votes 400 275 325
Second Round Votes Considered (After Elimination of Candidate B)
Ballot AC AC AC CA CA CA
Votes 200 200 75 200 150 175
Second Round (Final) Results
Ballot A C
Votes 475 525

different conditions. In one such study, Joyner (2019) used 
machine learning tools to estimate the hypothetical outcome 
of the 2004 presidential election had it been conducted us-
ing the IRV algorithm. In another study, Kilgour et al., (2019) 
used numerical simulation to determine whether the phe-
nomenon of ballot truncation had an impact on the probabil-
ity that the winner of an election is also a Condorcet winner, 
which denotes a candidate that would win all head-to-head 
elections of competing candidates. Ornstein and Norman 
(2013) developed a numerical simulation to assess the fre-
quency of nonmonotonicity in IRV elections, a phenomenon 
where a candidate’s support in the ballots and performance 
can become inversely related.

However, to our knowledge, no studies have focused 
on the impact of ballot dispersion on Plurality and IRV elec-
tion outcomes. One might wonder how the concentration of 
votes (i.e., a situation where voters usually either support 
Candidate C over Candidate B over Candidate A, or support 
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Candidate A over Candidate B over Candidate C) affects 
whether these two algorithms select the same candidate 
given a random election. In this study, we develop a theo-
retical approach to determining the circumstances in which 
the Plurality and IRV algorithms might produce concordant 
results, and the likelihood that such a result could occur as 
a function of ballot dispersion. We hypothesize that if the 
dispersion of voter preferences and ballots increases, then 
the concordance between Plurality voting and Instant-Runoff 
Voting should decrease. 

This study seeks to determine the behavior and rate 
of change in algorithmic concordance with respect to bal-
lot dispersion for the purpose of understanding the funda-
mental differences between the Plurality and Instant-Runoff 
Voting algorithms. This information may influence electoral 
policy decisions in the future as more states and municipali-
ties consider different voting algorithms and their impacts 
on election outcome, candidate behavior, and voter enfran-
chisement. 

METHODS

Mathematical Notations and Definitions
The dispersion, or alternatively the concentration, of the 
underlying ballot structure can be expressed quantitatively. 
Shannon entropy is a common method used to assess the 
information content of a disordered system (Shannon, 1948). 
In other contexts, concentration has been expressed using 
the Herfindahl–Hirschman Index (HHI) (Rhoades, 1995). 
These measures are complementary and help differentiate 
boundary case elections (i.e., cases where all voters sup-
port a single candidate or where ballots are uniformly cast 
for all candidates) from intermediate case elections where 
there is an even but nonuniform distribution of ballots. After 
clustering mock elections on the basis of their Shannon en-
tropy and HHI, we examine how the concentration of votes 
relates to the concordance or discordance of election win-
ners between the algorithms, i.e., the likelihood that the two 
algorithms might have produced identical winners.

Let x denote a discrete random variable with possible 
values x1 ... xn , and P(x) denote the probability mass func-
tion of x.

Then the Shannon entropy, H(x), is given by:

And the Herfindahl–Hirschman Index, HHI(x), is given 
by:

Monte Carlo Simulation of Election Winner Concordance
We conducted a numerical simulation in which we gener-
ated one million hypothetical elections, calculated the ballot 
dispersion in each election, and compared the winner of the 

election using the Plurality and the IRV algorithms. For our 
analysis, we employ a stochastic Monte Carlo simulation of 
hypothetical 3 candidate elections. The calculations are suf-
ficiently straightforward and can be performed in a Microsoft 
Excel spreadsheet as described below. Prior to beginning 
the simulation, we identify all possible unique voter prefer-
ence profiles. For a 3 candidate election where every voter 
ranks the candidates from most to least preferred, there are 
six unique ballots (Table 1).

For example, consider the results of a mock election as 
shown in Table 3. Candidate A wins under Plurality. How-
ever, employing the IRV algorithm, we eliminate candidate B 
and redistribute the votes resulting in Candidate C winning 
under IRV. Since these election methods produce different 
winners, their concordance is 0. Given thepercentage of 
each ballot permutation cast, we can calculate the HHI and 
Shannon entropy:

Shannon entropy:

It should be noted that in order to reach certain levels of 
Shannon entropy and HHI, there must exist a candidate with 
more than half the votes, which would guarantee the algo-
rithms are concordant. The maximum level of concentration 
that can be achieved without a guarantee of concordance is 
when two of the six possible ballots and/or candidates have 
exactly half of the vote. The HHI of any such situation is:

and the Shannon entropy can be at most:

In the situation where only the first-choice preferences are 
visible, as in the case of Plurality election, the correspond-
ing boundary conditions for HHI(x) and H(x) are still 0.5 and 
0.693147, respectively.

We simulate one million of these individual hypothetical 
elections. In each election, we determine both the Plurality 
winner and the IRV winner using the algorithm (Table 2). The 
Plurality winner in each election is straightforward. In each 
election for each candidate, we add together the votes for 
ballots in which the candidate was the first choice. In addition 
to each simulated election having both a Plurality and IRV 
winner, it also has a distinct voter preference concentration, 
which we describe in terms of Shannon entropy and HHI. 
We calculate two values for each of these statistics. The first 
is the ballot value and incorporates information across all 
ballot types. The second is the candidate value and incorpo-
rates only information related to voters’ first choice.
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Figure 1. Probability of Winner Concordance vs. Ballot Shan-
non Entropy.

Figure 2. Probability of Winner Concordance vs. Ballot HHI.

Figure 3. Probability of Winner Concordance vs. Candidate 
Shannon Entropy.

Figure 4. Probability of Winner Concordance Based on Can-
didate HHI.

Figure 5. Probability of Winner Concordance Based on Plural-
ity Vote Percentage.

In order to determine how often certain amounts of entropy 
and HHI levels relate to concordance, we need many elec-
tions with identical levels of entropy and HHI. This is not 
achievable through the given method, as we cannot gener-
ate a random election based purely off of the HHI or entropy, 
and it is numerically unlikely we will obtain two different elec-
tions with the same entropy or HHI. In order to account for 
and remedy this issue, we uniformly divide the range of the 

possible values of entropy and HHI into 100 equal segments 
(hereafter referred to as bins), and then calculate the aver-
age concordance of all elections with entropy or HHI within 
those bins. The bins are ordered from least concentrated to 
most concentrated (i.e., the HHI bins start with bin 1 at the 
boundary case of HHI(x) = 1/6, and end with bin 100 at the 
boundary case of HHI(x) = 1,whereas the entropy bins start 
with bin 1 at the boundary case of H(x) = ln(6), and end with 
bin 100 at the boundary case of H(x) = 0). 

In the most common Plurality elections, outside observ-
ers only have access to partial information about the ballot 
dispersion. In these elections, each ballot contains only a 
single choice. Second choices are not collected. However, 
we can calculate the HHI and Shannon entropy of these first 
choices and show how their dispersion relates to the prob-
ability of concordant election outcomes, had they been the 
first round in an IRV election. We describe these relation-
ships as “candidate” concordance. The candidate HHI rang-
es from 1/3 to 1. The candidate Shannon entropy ranges 
from 0 to ln(3). Both of these measurements share the same 
cutoff for guaranteed concordance as their corresponding 
ballot concentration counterparts.
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RESULTS
In Figures 1 - 5, we present the results of one million simu-
lated elections, illustrating the probability of winner concor-
dance on the basis of ballot concentration and entropy. The 
concordance of election results based on the ballot Shannon 
entropy is shown in Figure 1. Concordance of election re-
sults increased as Shannon entropy decreased across bins 
1-63 before leveling off at 100% after bin 63. Concordance 
rose from a 75% likelihood in bins where ballots had the 
highest levels of Shannon entropy to a 100% likelihood of 
concordance in the boundary case.

The concordance of election results based on the ballot 
HHI is shown in Figure 2. Concordance of election results 
increased as HHI decreased across bins 1 - 40 before level-
ing off at 100% after bin 40. Concordance rose from a 75% 
likelihood in bins where ballots had the highest levels of HHI 
to a 100% likelihood of concordance in the boundary case.

The concordance of election results based on the can-
didate Shannon entropy is shown in figure 3. Concordance 
of election results increased as Shannon entropy decreased 
across bins 1 - 38 before leveling off at 100% after bin 38. 
Concordance rose from a 57% likelihood in bins where bal-
lots had the highest levels of Shannon entropy to a 100% 
likelihood of concordance in the boundary case.

The concordance of election results based on the candi-
date HHI is shown in Figure 4. Concordance of election re-
sults increased as HHI decreased across bins 1 - 26 before 
leveling off at 100% after bin 26. Concordance rose from a 
56% likelihood in bins where ballots had the highest levels 
of HHI to a 100% likelihood of concordance in the boundary 
case.

Figure 5 displays the concordance based on thepercent-
age of the vote that the Plurality winner possessed. We see 
that there is a 50% likelihood of concordance when the win-
ner has about one-third of the total vote, and the likelihood 
increases until eventually reaching 100% after the plurality 
winner obtains 50% of the vote.

DISCUSSION
We find that when there is not a single winner with an abso-
lute majority in the first round of voting, a decrease in Shan-
non entropy and/or an increase in HHI (represented by an 
increase in the bin numbers) results in a decrease in algo-
rithmic concordance. (Figures 1 - 4).

Our analysis suggests that concordance between Plu-
rality and IRV algorithms increases alongside the ballot con-
centration, with the probability of concordance depending on 
whether Shannon entropy or HHI is used to measure that 
concentration. Thus, greater preference dispersion results 
in lower concordance as hypothesized. Higher degrees of 
voter preference concentration, or lower Shannon entropy, 
tends to increase the potential for winner concordance. 
We also prove that electoral outcomes are guaranteed to 

be concordant above a certain level of ballot concentration. 
Further, we can use the results of our simulations to illustrate 
candidate concordance.
General Findings
The results show that in a 3 candidate election, an increase 
in the concentration of votes causes an increase in the con-
cordance of the election algorithms. Simply put, as voter 
preferences become more evenly distributed (i.e., there are 
few differences between the number of voters expressing 
interest in any particular ballot), it becomes more likely that 
the election systems will disagree. However, as the prefer-
ences further concentrate, it becomes increasingly likely that 
the election algorithms will agree. When one specific ballot 
has more than half the votes, the election algorithms always 
agree.

We earlier showed that there is a certain threshold for 
both the HHI and the entropy after which the algorithms will 
be concordant. For the HHI, this point is located at 0.5, mean-
ing that the Plurality and IRV algorithms with HHI above 0.5 
are guaranteed to be concordant. For the Shannon entropy, 
this point is at approximately 0.6931, meaning that elections 
with Shannon entropy lower than 0.6931 are guaranteed to 
be concordant. All of the data simulated agreed with this fact.

In a three-candidate election, the third-place candidate 
in both election algorithms is determined by the first-choice 
preferences, and thus is always unaffected by the choice of 
algorithm. Thus all non-concordant elections are elections 
where the second-place candidate under Plurality is elected 
under IRV. In other words, for three candidates, IRV benefits 
the second-place candidate and harms the first-place can-
didate, except in two boundary cases. These are the cases 
where one candidate has a majority of first-choice, or the 
likelihood that the two algorithms might have produced iden-
tical winners based only on first choice preferences votes, 
and the other being the case where all first-choice votes for 
the third candidate have the Plurality winner as their second 
choice. 

The relationship between ballot concentration and win-
ner concordance can be observed even in the absence of 
full voter preference information. For example, the Shannon 
entropy and HHI can be calculated using only voters’ first 
choice preferences. The candidate information cases illus-
trate similar outcomes. In cases of low ballot concentration 
(or high entropy) there is a lower tendency for winner con-
cordance.

Another particularly interesting outcome is our ability to 
estimate how likely a Plurality election winner would have 
been concordant with the IRV winner when the Plurality win-
ningpercentage is the only available information. As shown 
in Figure 5, the likelihood of winner concordance approach-
es one hundred% when one candidate achieves close to a 
majority of first-choice preferences. However, the likelihood 
of concordance drops rapidly when no candidate dominates, 
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and approaches 50% when the candidate with the most first-
choice ballots only modestly surpasses the next most pre-
ferred candidate.

One of the challenges with this approach is that since 
the votes by ballot are generated randomly, they tend to be 
very evenly distributed (randomness, especially uniform ran-
domness, tends to carry very high Shannon entropy and low 
HHI), and thus most data tend to fall into the lower bins. As 
a result, many of the higher bins did not receive any data, 
despite the usage of an exponential distribution to make the 
randomized data less uniform. Fortunately, the bins that re-
ceived no data were exclusively after the point where the 
algorithms are guaranteed to be concordant.

Despite the seemingly drastic results of the data, most 
of the circumstances in which there would be a low chance 
of concordance require unusual distributions of voters (e.g., 
all three candidates must be quite similar in the size of their 
support). These situations are extremely uncommon in a 
two-party system, where the third-party candidate generally 
garners little support. As a result, there is very little differ-
ence in the algorithms for a two-party system
Opportunities for Further Research
This paper presents only the initial steps on a longer inquiry. 
Further enhancements to this research would be to (i) study 
N-candidate elections (rather than only three candidates), 
(ii) evaluate different methods to produce hypothetical voter 
preference concentrations, and (iii) perform a comparative 
analysis on alternative electoral algorithms.

There are many questions that arise from these results. 
The most immediate question is how the concordance would 
be affected in a general N-candidate election. The reasons 
for this are unclear and warrant further study. Since the num-
ber of elections that could be simulated was limited to one 
million hypothetical elections, there are opportunities to in-
crease the sample size. In order to utilize a finer bin size 
without having bins that receive no data, the sample size 
would need to be drastically increased, likely requiring a 
different methodology for obtaining and storing data and/or 
more robust modeling.

This paper addresses only the likelihood of winner con-
cordance when comparing the Plurality and IRV algorithms. 
The approach is broadly extensible to comparisons between 
other electoral algorithms.
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