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Currently, diagnosis of melanoma is done primarily by biop-
sy, an invasive and costly procedure (American Cancer Society, 
2017). A new technique called dermoscopy has been proposed as a 
pre-biopsy melanoma risk evaluation tool that can be applied by a 
wide range of physicians, including family practice doctors (Her-
schorn, 2012). Dermoscopy is a non-invasive method that uses 
microscopes to amplify details of skin lesion photographs, such 
as the colors and microstructures of the skin, the dermoepidermal 
junction (the area of tissue joining the epidermal and dermal layers 
of skin), and the papillary dermis (uppermost layer of the dermis). 
Compared to inspection of cutaneous lesions by the naked eye, 
this method can increase physicians’ confidence in their referral 
accuracy to dermatologists thereby reducing unnecessary biopsies. 
The early phases of malignant melanoma, however, share many 
clinical features with atypical or unusual looking non-malignant 
moles, also known as dysplastic nevi. As a result, diagnostic ac-
curacy has been shown to range between 50-75% (Stanganelli, 
2017). A commonly used standard for pre-biopsy melanoma risk 
evaluation is described by the ABCDE rule (Abbasi et al., 2004). 
This rule defines five common characteristics of malignant le-
sions: asymmetry (A), border irregularity (B), multiple colors (C), 
diameter greater than six millimeters (D), and enlargement (E). By 
looking for these five characteristics in dermoscopic images, phy-
sicians can evaluate the risks of malignancy of the lesions. Such 
evaluation, however, is inherently imperfect due to differences in 
human interpretation of the lesions. To enable faster, more acces-
sible, and more effective evaluation of melanoma risks, there is a 
need for automatic computerized processing of skin lesions. The 
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Early diagnosis of malignant skin lesions is vital to maximize survival rates of patients with melanoma. Currently, diagnosis of 
melanoma, a common and deadly form of skin cancer, is done primarily by biopsy, an invasive and costly procedure. A new tech-
nique called dermoscopy has been proposed as a pre-biopsy melanoma risk evaluation tool. The accuracy and efficiency of clini-
cal diagnosis can be improved with fully automated dermoscopic diagnosis. Developing such a diagnosis tool is particularly impor-
tant for melanoma and can be achieved through analysis of skin lesion images using a three-step process of segmentation, feature 
extraction and classification. In this paper, a new method for automated segmentation of skin lesions is proposed. The method first 
preprocesses the input image using white balance correction and noise and artifact reduction. Subsequently, it identifies skin ab-
normalities using a learned healthy-appearing skin intensity model. It then detects the skin lesions using a trained lesion shape clas-
sifier, and finally, refines the lesion boundary using GrowCut-based delineation. The method was trained and validated on a pub-
licly available dataset of skin lesions and compared to well-known baseline methods including Otsu Thresholding, Active Contours, 
and K-Means Clustering. The algorithm achieved a median accuracy of 0.94 and a median Dice Coefficient of 0.87, representing a 
significant improvement (p < 0.001) over the baseline methods. The proposed algorithm is more accurate than established segmen-
tation methods, fully automated, and can be used in an automatic skin cancer diagnosis system with high accuracy and efficiency.

INTRODUCTION
Skin cancer is the most common type of cancer in the United States, 
affecting one in five Americans over the course of a lifetime (Rob-
inson, 2005). Among skin cancers, melanoma is one of the most 
dangerous forms, accounting for the vast majority of deaths as-
sociated with skin cancer. It will affect an estimated 91,270 people 
in the United States in 2018, leading to an estimated 9,320 deaths 
(American Cancer Society, 2018). Although melanoma is a preva-
lent and potent form of cancer, patients often make full recoveries 
if it is discovered and treated early. The malignant tumor is simply 
removed through a relatively straightforward surgery. If melanoma 
is discovered when it is still localized, patients have a survival 
rate of 98.5%. This drops to 62% when the disease spreads to the 
lymph nodes and 18% when it metastasizes to other organs (Na-
tional Cancer Institute, 2017). Thus, it is extremely important to 
diagnose malignant melanoma early. 
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goal is a workflow where medical technicians take photographs 
of suspect lesions, upload them to a remote or local computer and 
receive a diagnosis and confidence measure. This would lead to 
widespread and low-cost availability of high-quality melanoma 
diagnosis.

The automated processing and diagnosis of melanoma con-
sists of detection and delineation of skin lesions followed by ex-
traction of established measurements such as in the ABCDE rule. 
Fully automated segmentation provides both detection of the le-
sion in the image and identification of its boundaries. Automated 
segmentation can be combined with such rules to provide automat-
ed malignancy risk estimation for a lesion. Black box approaches 
to lesion classification, such as end-to-end machine learning algo-
rithms, perform diagnosis without providing insight or explanation 
for the conclusion (Esteva et al., 2017). In some instances, such 
approaches can lead to the right conclusions based on wrong as-
sumptions. For example, a deep learning approach to skin lesion 
segmentation algorithm was more likely to call a tumor malignant 
in the presence of a ruler in the image. This correlated with an 
increased likelihood that a lesion was cancerous, because when 
dermatologists are looking at a lesion that they think might be a tu-
mor, they use the ruler to take an accurate measurement of its size 
(Patel, 2017). On the other hand, diagnostic pipelines with explicit 
segmentation and feature identification (such as the ABCDE rule) 
can show a physician the steps leading to, and provide reasoning 
for, the generated prediction. This work focuses on improving au-
tomated image segmentation usable in a multitude of diagnostic 

algorithms.
This paper proposes a new fully automated skin lesion seg-

mentation algorithm, using a pipeline of (a) image pre-process-
ing, (b) lesion detection using a normal-appearing skin intensity 
model and lesion shape classifier, and (c) refined boundary delin-
eation using the GrowCut segmentation algorithm (Vezhnevets & 
Konouchine, 2005). The new pipeline with GrowCut, a cellular 
automaton technique to find homogeneous structures, was inves-
tigated to determine the efficacy of this approach. This research 
demonstrates that a cellular automaton approach supplemented 
with image pre-processing and good initial object identification 
leads to better segmentation. The proposed algorithm is imple-
mented using MATLAB and evaluated on a publicly available 
dataset of 379 images. The results showed that it is significantly 
better than three well-known baseline segmentation algorithms: 
Otsu Thresholding, Active Contours and K-Means Clustering, 
which use simpler approaches to achieve delineation. In the fol-
lowing sections, the proposed algorithm, its evaluation, and results 
of comparison with baseline techniques using standard error mea-
sures are described in detail. 

MATERIALS AND METHODS
Dataset
The accuracy of the proposed segmentation algorithm was evalu-
ated in MATLAB using a skin lesion image dataset from the In-
ternational Skin Imaging Collaboration (“ISIC Archive,” 2016). 
Specifically, the ISIC 2016 (Figure 1) challenge dataset (ISIC16) 

Figure 1. Eight images showcasing the variety of ISIC16 dataset.

A) B)

Figure 2. An example of an original color image of a lesion from ISIC 
16 dataset (A) and its grayscale version used by the algorithm after 
pre-processing with ground truth segmentation outline in blue (B).

Figure 3. Automated Segmentation Algorithm flowchart.
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is used, which consists of 900 images with ground truth segmenta-
tions (Figure 2), to train the analytic models, and 379 images to 
test the effectiveness of the algorithm using a variety of different 
performance metrics (Gutman et al., 2016). The lesion appear-
ances in the dataset vary greatly in attributes like color, texture, 
uniformity of lesions, and location of lesions.       
Automated Segmentation Algorithm
The proposed segmentation algorithm (Figure 3) consists of the 
following steps: pre-processing, lesion detection, and outline de-
lineation. Pre-processing reduces noise and artifacts in the image, 
lesion detection finds the center of the lesion and initial lesion ra-
dius, and outline delineation refines the lesion boundaries and pro-
duces the final segmentation. 
Pre-processing
The input image is pre-processed to remove artifacts, such as small 
skin tone variation, hair and bandages. This allows later stages of 
the algorithm to focus on the lesion, thus optimizing its accuracy. 
Two filters are applied in this first stage of the algorithm. First, 
a white balance correction filter is employed to standardize the 
image intensities and eliminate the negative effect of illumination 
variation across images. Second, a Gaussian filter is applied to 
smooth out the image even more, making it easier to process. The 
equation of a Gaussian function in two dimensions is:

where x is the distance from the origin in the horizontal axis, y is 
the distance from the origin in the vertical axis, and σ is the stan-
dard deviation (sigma) of the Gaussian distribution.

In the proposed algorithm, the Gaussian function is applied 
to kernels of 15 pixels by 15 pixels with sigma set to three pixels. 
Initial experiments were performed to select the kernel size and 
sigma value. The accuracy of segmentations under the Dice Coef-
ficient was tested using kernel sizes ranging from 8x8 to 20x20 
and sigma values between one to four. It was determined that while 
changing the kernel size made a negligible difference in smooth-
ing out the image, a kernel size of 15x15 pixels was the most ac-
curate of the sizes tested. A sigma of three pixels ensured that the 
outermost pixels of each block did not receive too much weight, 
and it was noted to reduce noise in the image well with the chosen 
kernel size. 

The Gaussian filter sets each pixel to the weighted average of 
its neighbors, with the central pixels receiving more weight than 
the outermost pixels. Giving more weight to the central pixels re-
sults in gentler smoothing than a normal weighted average. The 
resulting image blur removes small objects but preserves boundar-
ies and edges (Figure 4).   		
Automated Lesion Detection
Hue and Saturation Learning-based Healthy-Appearing Skin
Segmentation
The pre-processed image is then color thresholded (Figure 5) to 
remove all skin-like pixels. Thresholding is the process where pix-

A) B)

Figure 4. Original image (A) and pre-processed image (B) from 
ISIC16  dataset (index 65).

A) B)

Figure 5. Original image (A) and color thresholded image (B) from 
ISIC16  dataset (index 24). 

A) B) C)

Figure 6. An example of original (A), color thresholded (B), and se-
lected connected-component (C) images, ISIC16  (index 440). 

els within a specific range of hue and (separately) saturation values 
are labeled as “not-skin,” and the intersection of these two not-skin 
pixel masks is found. The hue and saturation (HS) color channels 
are used instead of the RGB color channels due to inherently large 
variance of pixel intensity of the lesions in the RGB channels. The 
HS channels exhibit greater clustering and uniformity in the data-
set. The algorithm determines optimal hue and saturation threshold 
ranges to segment out skin through three-fold validation, that is, 
training on a third of the data set and validating on the remaining 
two-thirds in three independent experiments. For each fold of 300 
images, the ground truth image is used to randomly sample 1000 
pixels of each image that are outside the ground truth mask and 
away from the border of the image. These pixels are highly likely 
to be skin pixels. The median and standard deviation of the entire 
set are then computed. The median is used instead of the mean 
because using the median ensures that any outlier lesion pixels 
sampled do not affect the range of intensities calculated, so non-
skin pixels mistakenly sampled do not affect the computation. The 
trained threshold values are then validated on the remaining 600 
images in the training data. The accuracy measure is taken after 
connected component analysis, and based on whether the correct 
object has been identified as the lesion. This process is performed 



JYI | February 2019 | Vol. 36 Issue 2
© Ho, 2018 14

A R T I C L ERESEARCHJournal of Young Investigators

on the other two folds, and the three median and standard deviation 
values are analyzed and converted into a range of intensities to be 
used as the threshold. 
Connected-Component Analysis
After HS thresholding, connected-component analysis is per-
formed on the remaining objects in the image to isolate the lesion. 
First, the distance from the center of each object to the center of 
the image is calculated. Images taken for dermoscopy focus on the 
lesion under consideration. Hence, the lesion is always centrally 
located and a significant portion of the image. This observation is 
used to remove objects near the edge of images, which tend to be 
bandages or labels. 

Next, small objects that could not be the lesion are filtered 
out. Often, after HS thresholding, insignificant circular objects 
are scattered throughout the image. These objects can be removed 
from analysis by eliminating all objects smaller than a third of the 
area of the largest object in the image. 

Lastly, specific properties of each remaining object, namely 
diameter, circumference, and area are extracted. These three prop-
erties have known relationships in perfect circles, thus each object 
is analyzed and the most circular object is identified. After identi-
fication, all other objects and noise in the image are removed. The 
result is an object that is identified as part of the lesion with high 
confidence (Figure 6). The full lesion will have varied textures and 
color throughout, and the full shape may be different from the ob-
ject identified, but this object provides a good starting point for the 
GrowCut algorithm to act on.
GrowCut-based Delineation
In their work, Vezhnevets and Konouchine (2005) propose a 
new segmentation technique called GrowCut (Vezhnevets & Ko-
nouchine, 2005). The GrowCut algorithm treats an input image as 
a cellular automaton, where each pixel in the image is considered a 
cell of the automaton and given a label (Berto & Tagliabue, 2017). 
For segmentation, the cells are labeled as “foreground” (value = 
1) for pixels that are part of the lesion, “background” (value = -1)
for skin and other non-lesion objects, or “undetermined” (value =
0) for the remaining pixels. The algorithm then applies automata
evolution where the cells compete to capture neighboring cells,
thereby changing the labels of undetermined cells and increasing
the number of like cells.

Following the lesion detection, the GrowCut method is used 
to complete the segmentation. All pixels that are identified as part 
of the lesion are labeled as foreground (value = 1). The background 
pixels are determined through a series of steps: 
1. The input image is converted to grayscale and the location

where the change in pixel intensity is the highest is identified.
2. The distance from the center of the identified lesion to this

pixel is calculated and set as the lesion radius.
3. All pixels further away from the center of the identified lesion

than the lesion radius are labeled as background (value = -1).
4. The remaining pixels are labeled as undetermined (value = 0).
5. Finally, these labels are fed into the GrowCut method and the

segmentation is produced.

Skin Lesion Segmentation Using Baseline Algorithms
Other segmentation algorithms are briefly described in this sec-
tion. These methods are used as baseline methods to compare 
against our new algorithm in the results section.
Baseline GrowCut Method
The baseline GrowCut method is a cellular automata, which can 
be described generally as an algorithm working on a lattice of sites 
(pixels). The cellular automaton is a triplet:

A = (S, N, δ)
where S is an non-empty state set, N is the neighborhood system, 
and δ : S N → S is the local transition rule, which calculates the 
state of the system at the next time step. In the baseline implemen-
tation of GrowCut, the nearest neighbor system is used for N.

Baseline GrowCut assumes that the lesions are centrally lo-
cated in the images. Each image is pre-processed using Median 
and Gaussian filtering to remove noise. Then, a circle generated in 
the center of the image is assumed to be the lesion and labeled as 
foreground. Through empirical testing, a radius of 90 pixels was 
found to give optimal results on the training data set. Finally, steps 
3 through 5 as outlined in the “GrowCut-based Delineation” sec-
tion are performed and the segmentation is obtained.
Active Contours
Active contours use a deformable curve (called a “snake”) to de-
lineate an object outline from a 2D image through energy minimi-
zation (Kass, 1988). The curve, or contour, actively moves around 
the image under the influence of internal spline forces that push it 
towards image features like edges, while external constraint forces 
keep the snake near the desired local minimum. Together, by mini-

Metric Formula Description

Accuracy (TP+TN)/(TP + TN 
+FP + FN)

Number of pixels labeled 
correctly divided by the total 
number of pixels.

Dice Coefficient 2TP/(TP + FP + TP 
+ FN)

Focuses on the accuracy of 
the foreground pixels, and 
penalizes for wrong labels.

Sensitivity (True 
Positive Rate)

TP/(TP + FN) Measures the proportion of 
foreground pixels that are 
labeled correctly, not con-
sidering background pixels.

Positive 
Predictive Value

TP/(TP + FP) Probability that a pixel la-
beled as foreground is actu-
ally foreground.

Jaccard Index TP/(TP + FN + FP) Similar to the Dice Coeffi-
cient, but penalizes more for 
wrong predictions.

Table 1. Segmentation of performance measures and how they are 
calculated. TP = True positive, the number of pixels correctly labeled 
as foreground (value = 1). TN = True negative, the number of pixels cor-
rectly labeled as background (value = 0). FP = False positive, the number 
of pixels wrongly labeled as foreground. FN = False negative, the number 
of pixels wrongly labeled as background.
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Otsu’s Method
Otsu’s Method uses a simple threshold on the grayscale image 
pixel intensities (Otsu, 1975). The image is first converted to gray-
scale and an optimal threshold value is found to separate the most 
frequent clusters of pixel intensities. All pixels with intensities 
below the threshold are labeled as foreground and all pixels with 
intensities above the threshold are labeled as background. The for-
mula for computing the Otsu threshold is:

σ2
ω (t) = ω0(t)σ

2
0 + ω1(t)σ

2
1 (t)

where σ2
ω (t) represents the weighted sum of variances of the two 

classes (foreground and background). The weights (ω0 and ω1) 
represent the probabilities that the two classes will be separated 
by the threshold (t), while σ2

0 and σ2
1 represent the variance of the 

classes. Otsu’s method finds the threshold value that minimizes 
σ2

ω (t).
Statistical Analysis
The Wilcoxon signed rank test was used to determine whether 
there is a statistically significant improvement of the median ac-
curacy of the proposed algorithm compared to each baseline algo-
rithm (Wilcoxon, 1945). 

RESULTS
The accuracy of the overall segmentation was evaluated in terms 
of whether each pixel is correctly labeled according to the ground 
truth image, which defines the correct result. Several commonly 
used metrics are summarized in Table 1. For the proposed seg-
mentation algorithm and each baseline method, the five metrics 
described in Table 1 were measured and the median across the 
testing image set was calculated and presented in Table 2. For 
these metrics, higher values represent a segmentation result more 
similar to that of the ground truth image. 

The performance metrics shown in Table 2 and the Dice Co-
efficient box plot (Figure 7) demonstrate that the proposed algo-
rithm is superior to all of the baseline methods (described above), 
outperforming all baseline methods in the three most important 
accuracy measures: accuracy, Jaccard index, and Dice Coefficient. 
The median accuracy of 0.94 demonstrates the strong performance 
and consistency of the proposed algorithm. The median accuracy 
of the proposed segmentation algorithm was found to be a statisti-
cally significant improvement (p < 0.001, Wilcoxon signed rank 

mizing the energy function, the forces act to discern the boundary 
of objects in the image. All pixels inside the boundary are labeled 
as the lesion. The energy function for the contour can be expressed 
by the following formula:

where v(s) represents the position of the contour, Eint represents the 
internal energy of the bending spline, Eimage represents the image 
forces, and Econ represents the external constraint forces.
K-Means Clustering
K-means is one of the simplest unsupervised learning algorithms
(Hartigan & Wong, 1979). The main idea is to initially separate
the data set into k clusters and find the center point of each clus-
ter, known as the centroid of the cluster. The algorithm then as-
signs each data point to the nearest centroid to create new clusters.
This is repeated until the clusters are stable. In the case of skin
lesion segmentation, k-means clustering deals with two clusters:
foreground and background. Although it has been proven that the
procedure terminates, it is not guaranteed to find the optimal con-
figuration and is sensitive to initial choice of centroids. In our use
of k-means, initial centroids were chosen that are most obviously
foreground and background from the previous steps.

Formally, given a set of pixels (x1, …, xn), k-means clustering 
aims to partition the n pixels into k (k = 2 in this instance) sets S 
= {S1, …, Sk} so as to minimize the within-cluster sum of squares 
(variance). The goal is to minimize the objective function:

where ||xi
(j) - cj||

2 is the distance measure between a pixel xi
(j) and the 

cluster center cj (“Clustering - K-means,” n.d.).
The algorithm is as follows:
1. Select two points, one representing the centroid of the fore-

ground cluster and one representing the centroid of the back-
ground cluster.

2. Assign each pixel in the image to the nearest cluster.
3. When all pixels are assigned, recalculate the position of the

centroids of the foreground and background.
4. Repeats steps 2 and 3 until the centroids do not move.

Algorithm Accuracy Dice Coefficient Sensitivity (True Positive 
Rate)

Positive Predictive 
Value

Jaccard Index

Proposed Algorithm 0.94 0.87 0.9 0.96 0.77
Baseline GrowCut 0.92 0.76 0.66 1.0 0.61
Active Contours 0.85 0.75 0.96 0.85 0.59

K-Means Clustering 0.87 0.54 0.47 0.97 0.37
Otsu Thresholding 0.87 0.70 0.71 0.89 0.54

Table 2. Median performance metrics for proposed algorithm and baseline methods of segmentation on testing data set.
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test) over the four other implemented segmentation methods. A 
p-value of less than 0.01 is sufficient evidence to conclude a statis-
tically significant difference (Fenton & Neil, 2012). Thus, it can be
concluded that the proposed GrowCut-based algorithm is superior
to all of the baseline methods. The ISIC16 dataset contains images
with a variety of different lighting and defects, proving the merit
of the proposed algorithm. The algorithm, however, struggles with
some irregular images, as shown by the outlier segmentations in
Figure 7. The Sensitivity and Positive Predictive Value measures,
while being useful to determine the accuracy of foreground pixels,
only measure one aspect of the segmentation and thus, are not rep-
resentative of the entire segmentation.

DISCUSSION
Accurate automated segmentation of skin lesions in dermoscopic 
images could assist in the development of reliable computerized 
diagnosis systems and help decrease the burden of manual evalu-
ation of this pre-biopsy exam. This work proposes a new auto-
mated segmentation pipeline based on cellular automata, which on 
a common dataset, performs favorably compared to the baseline 

methods. Specifically, the results demonstrate that the algorithm 
provides a statistically significant improvement to the accuracy 
of segmentation, as measured by the Wilcoxon signed rank test, 
while maintaining high sensitivity and positive predictive value. 
Currently, further research is required to provide sufficient sup-
port that automated diagnostic systems will be able to replace hu-
man observation. To garner that support, the next steps will require 
coupling this segmentation method with a diagnostic algorithm to 
show that an automated diagnostic pipeline for melanoma can be 
more effective than manual diagnosis and is capable of implemen-
tation in clinics.

Examination of the images that had poor segmentations re-
vealed that they shared some common characteristics. Most 
prominently, the lesion borders were hard to discern and the edges 
needed to be inferred using incomplete edge fragments. Secondly, 
there were also a few images that looked like two separate lesions 
but which needed to be combined to form the ground truth le-
sion (Figure 8). These outlier images reduce the accuracy of the 
algorithm and could be addressed in future work. Solutions may 
include implementing a deeper feature analysis for all identified 
objects, aiming to identify characteristics that could differentiate 
the lesion-like objects or enhancing the algorithm for cases with 
multiple lesion-like objects.

This paper proposes a novel algorithm for addressing the 
problem of automatic lesion segmentation for skin lesion dermos-
copy. This research can lead to better diagnosis capability for skin 
cancer. More broadly, any image-based automated diagnostic tech-
nique will benefit from improved segmentation. 
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