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tide-resolution analyses of a species’ DNA content (Stapley 
et al., 2010), most environmental change occurs within an 
organism’s lifetime and far outpaces the utility of adaptation 
by natural selection.  Adapting to environmental change oc-
curring within an organism’s life requires not varying the fea-
tures of the genome itself but rather how those features are 
regulated and expressed in response to ever-changing envi-
ronmental demands, processes that have come to embody 
central themes in the “post-genomic” era of biology (McGet-
tigan, 2013; Snyder et al., 2020).  The shifting seasons ex-
emplify an environmental change likely to be encountered 
during an organism’s lifetime, with each season presenting 
a unique set of biotic and abiotic challenges to survival and 
reproduction. Plants epitomise seasonal biology, with much 
of their physiology and lifecycle being shaped by environ-
mental factors like annual fluctuations in temperature and 
day-length, including the induction of germination (Penfield, 
2017), flowering (Searle and Coupland, 2004), and leaf se-
nescence (Guo and Gan, 2005).  Accordingly, plants have 
long served as useful model organisms for fundamental re-
search into the nature of physiological adaptation to chang-
ing environments.

INTRODUCTION
Understanding how organisms adapt to their environment 
is a fundamental objective of biology.  Whilst genomic tools 
such as next-generation sequencing (NGS) platforms are 
regularly used to discern how organisms adapt to their en-
vironment over the course of evolution, by enabling nucleo-

Analysis of Multiple Years of RNA-Seq Data 
Using the 3D-RNA-Seq Application Reveals 
Seasonal Signatures of Differential Gene and 
Transcript-Level Expression, Alternative-
Splicing, and Transcript Usage in a Natural 
Population of Arabidopsis Halleri
Daniel Phillips1*, Wenbin Guo2,3, Runxuan Zhang3

Post-transcriptional, transcript-level regulation of gene expression through mechanisms like differential alternative splicing 
is increasingly demonstrated to play a central role in the regulation of many important biological phenomena. However, 
investigation of such activity is often absent in transcriptomic studies, partly due to a lack of comprehensive and accurate 
resources enriched for transcript-isoform and splice-junction information and computational tools designed to integrate both 
gene and transcript-level analyses of RNA-sequencing data.  Here, an existing and large RNA-sequencing dataset was 
reanalysed to study seasonal changes in differential gene and transcript expression, alternative splicing, and differential 
transcript usage in the leaf transcriptome of the perennial evergreen weed Arabidopsis halleri using the recently developed 
“3D-RNA-Seq” application, a tool purpose-built to increase the accessibility of bioinformatic data analyses and improve the 
understanding of underexplored, transcript-level phenomena of the eukaryotic transcriptome.  Thousands of differentially 
expressed and spliced genes and isoforms with differential usage were found that were associated with one or more of the 
four seasonal transitions and were mainly enriched for season-specific stress responses and mRNA processing functions. 
Transitions into and out of winter exhibited the most transcriptomic changes, and it was also found that most differentially al-
ternatively spliced genes (614/1,013) were not also differentially expressed. These results deeply characterise the seasonal 
plant transcriptome and indicate alternative splicing as an important and independent mechanism for seasonal adaptation 
in A. halleri.
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Such plant phenological events, in addition to seasonal 
changes in molecular-level physiological processes like nu-
trient acquisition (Nord and Lynch, 2009) and photosynthe-
sis (Gu et al., 2003) are ultimately mediated by subcellular 
molecular machinery controlled by environmentally respon-
sive gene expression networks.  Studying seasonally timed 
changes in plant gene co-expression can therefore enable 
detailed characterisation of this molecular machinery and 
further our appreciation for biological adaptation, however 
such research has tended to occur in controlled laboratory 
environments (Chaiwanon et al., 2016) or explore the causal 
role of only one or few selected genes (Aikawa et al., 2010; 
Satake et al., 2013).  NGS of the total RNA in a biologi-
cal sample (RNA-Seq) provides a high-resolution method 
for studying the system-level gene expression profile (i.e., 
“transcriptome”) of plants in different conditions (Abbai et 
al., 2017) and in their natural habitats (e.g., Champigny et 
al., 2013; Plessis et al., 2015; Lopez et al., 2019), and can 
be used to identify functional signatures of adaptation.  For 
example, in a two-year RNA-Seq experiment Nagano et al. 
(2019) recently captured seasonal dynamics in the leaf tran-
scriptome of a natural population of the perennial evergreen 
weed A. halleri ssp. gemmifera. In addition to describing 
consistent patterns in the average monthly transcriptome 
across each study year, they found 7,185 diurnally and 
2,879 seasonally oscillating genes, and used controlled en-
vironment experiments wherein they manipulated the natu-
ral phase between changing temperature and day length to 
show that these seasonal transcriptome dynamics were reg-
ulated more strongly by temperature fluctuations and have 
been adapted to improve several phenological measures of 
fitness.

By producing a detailed characterization of how leaf 
gene expression responds to the shifting seasons, Nagano 
et al. (2019) provide important insights into environmental 
adaptations of the plant transcriptome.  However, altering 
gene expression is only one mechanism that organisms can 
use to better align their physiology to emerging environmen-
tal pressures. Besides differential gene expression (DGE), 
post-transcriptional regulation at the transcript-level can 
be used to control the proportion of transcript isoforms ex-
pressed by a single gene via differential alternative splicing 
(DAS) of pre-mRNA molecules (Chen and Manley, 2009).  
DAS is significantly less understood than DGE but is emerg-
ing as an important regulatory mechanism for many adap-
tive plant processes (e.g., Ding et al., 2014; Thatcher et al., 
2017; Calixto et al., 2018).  The increased diversity of tran-
scriptional products resulting from DAS creates an addition-
al layer of transcriptomic complexity that is accessible from 
analyses of RNA-Seq data. For example, single transcript 
isoforms, similarly to single genes, can be differentially ex-
pressed across conditions (differential transcript expression: 
DTE), or can significantly increase in abundance relative to 
others (differential transcript usage: DTU).

Complementing gene-level analyses of DGE with tran-
script-level analyses of DAS, DTE and DTU can radically im-
prove our understanding of the environmental regulation of 
physiological adaptation.  Here we investigate such features 
of the transcriptome in leaves of Arabidopsis halleri ssp. 
gemmifera and characterise their activity in seasonal adap-
tation by reanalysing RNA-Seq data collected by Nagano et 
al. (2019) using the recently developed 3D-RNA-Seq tool 
(Guo et al., 2020).  An understanding of how transcript-level 
adaptations of the A. halleri transcriptome help to sustain 
biological fitness across changing seasonal conditions will 
not only provide technical details left unexplored by Nagano 
et al. (2019) but will help to foster a more integrated view of 
biological adaptation and identify areas for future study.

METHODS

Data Collection and RNA-Sequencing
This study involved the analysis of an existing RNA-Seq 
dataset of leaf samples taken from a natural population of 
Arabidopsis halleri ssp. gemmifera over the course of two 
years. Details of leaf sample collection and RNA-sequenc-
ing protocols can be found in the original article (Nagano et 
al., 2019).  Briefly, young (~10 mm) leaves were collected 
from 6 clonal patches of multiple A. halleri ssp. gemmifera 
rosettes (one randomly selected leaf per patch) growing nat-
urally at the Omoide River (Japan) every week from 5th July, 
2011 to 26th June, 2013, totalling 490 leaf samples across 
88 weeks.  Leaves were then rapidly treated with RNAlater 
(Thermo Fisher Scientific) solution before being preserved 
at -20°C prior to having their RNA extracted and sequenced.  
Total leaf RNA was extracted using the RNeasy Plant Mini 
Kit (Quiagen), quantified using a Qubit (Thermo Fisher Sci-
entific) or Quantus (Promega) Fluorometer, and quality-as-
sessed using a Bioanalyzer (Agilent Technologies).  100 or 
500 ng of RNA from each sample was used for NGS library 
preparation (Wang et al., 2011) and reassessed for quality 
before a maximum of 96 tagged libraries were mixed and se-
quenced as 50bp single-ended indexed reads over 49 lanes 
of the HiSeq 2000 (Illumina) sequencer.

Data Pre-Processing, Transcript-Quantification, and  
Data-Processing
Raw fastq files associated with 490 seasonal experiment 
samples were acquired from the DDBJ Short Read Ar-
chive repository (Accessions: DRA005871, DRA005872, 
DRA005873, DRA005874, DRA005875 and DRA005876) 
and quality-assessed with FastQC-0.11.8 (Andrews, 2015) 
and MultiQC (Ewels et al., 2016).  Universal Illumina adapter 
sequences were removed with the Cutadapt (Martin, 2011) 
module of TrimGalore-0.6.4 (Krueger, 2015) and samples 
were reassessed for quality using FastQC and MutliQC.

Transcript-level quantification was run using Salm-
on-1.2.1 (Patro et al., 2017) in quasi-alignment mode utilising 
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both the --seqBias and --gcBias parameters. The --seqBias 
flag directs Salmon to learn and correct for random hexamer 
priming bias that causes some reads to be sequenced pref-
erentially over others due to their starting-sequence motifs, 
and the --gcBias flag directs Salmon to learn and correct for 
fragment-level biases in the sequencing of certain fragments 
due to their GC-content. --gcBias was run because it does 
not impact quantification accuracy in samples lacking GC 
bias (only increase run-time), but is demonstrated to reduce 
systematic quantification errors in samples with significant 
GC-content sequence bias(es) (Love et al., 2016; Patro et 
al., 2017), and --seqBias was run because although the two 
mentioned types of sequencing bias are distinct, they are 
not entirely independent, and running both flags together di-
rects salmon to run a conditional fragment-GC bias model.  
Library-type was specified as unstranded (U) or strand-spe-
cific reverse (SR) on a sample-dependent basis depending 
on which had a higher mapping rate.

The AtRTDv2-QUASI Arabidopsis thaliana transcrip-
tome (Zhang et al., 2017) was used as the reference for 
quasi-alignment due to the fact that no publicly available ref-
erence transcriptomes currently exist for A. halleri, but also 
because AtRTDv2-QUASI is enriched for high-confidence 
transcript isoform- and splice-junction information for A. 
thaliana, which is closely related to A. halleri, and thus of-
fers ample opportunities for detecting alternatively spliced 
genes. AtRTDv2-QUASI was indexed with the --keepDu-
plicates parameter enabled and a pseudo-kmer length set 
to 19 bp.  The --keepDuplicates flag was enabled because 
it directs Salmon to disable its default behaviour of remov-
ing transcripts with ‘identical’ sequences from the resultant 
index, which may increase the possibility of highly similar 
transcript isoforms being inadvertently removed due the 
heuristics employed within the algorithm for calculating se-
quence similarity. The quasi-kmer length during indexing 
was specified as 19 bp, rather than the default of 31 bp (op-
timised for read fragments ≥75 bp), because for the much 
shorter ≤49 bp reads used here, it outperformed the default 
kmer of 31 bp as well as a shorter 26 bp kmer in terms of 
mapping rates.  Following quantification, nine samples were 
discarded due to having a total of <105.5 observed reads, 
and a further 26 were then discarded due to having ≈0 tran-
script counts, totalling 455 samples which were progressed 
onwards for analysis within 3D-RNA-Seq.

Within the 3D-RNA-Seq environment, transcript per 
million (TPM) quantifications of transcript abundance gen-
erated by Salmon were used to estimate transcript- and 
gene-level pseudo-read counts with TXimport (Soneson et 
al., 2015) utilising the lengthScaledTPM flag, which corrects 
count estimations for abundance biases due to library size 
and read length. Gene- and transcript-level counts per mil-
lion (CPM) data were then assessed using mean- variance 
trend plots. The mean-variance trend plots indicated that 
the data were very highly skewed towards lowly-expressed 

genes and transcripts. Consistently lowly-expressed genes 
and transcripts reduce the statistical power of down-stream 
tests (discussed below) due to increasing the multiple-test-
ing burden on calculations of false discovery rates (FRA) 
whilst themselves providing little more than statistical noise. 
Therefore, to negate these limitations and achieve the neg-
ative-binomial distribution in the mean-variance trend as-
sumed by downstream statistical analyses, lowly-expressed 
genes and transcripts (defined here as those that do not 
have >2CPM in ≥50 samples) were removed.  Gene and 
transcript-level abundances were then normalised with the 
weighted trimmed mean of M-values (TMM) method, once 
again correcting for both library- and average fragment-size.

Statistical Analysis: DGE and DTE, DAS, DTU, and Gene 
Ontology
For statistical discovery of transcriptomic signatures of dif-
ferent seasons weekly gene- and transcript-level log2-CPM 
data were averaged for each (3 month) season and tested 
using the Limma-voom Weights pipeline, to reduce the effect 
of statistical counts outliers across the large dataset. Data 
were averaged for seasonal months so that an overall ‘signa-
ture’ of gene regulation could be identified for each season, 
and the natural variation across seasonal samples could be 
collapsed without consideration of meteorological variation.  
Limma (Ritchie et al., 2015) was used because although it 
performs similarly to other pipelines (e.g., Sleuth (Pimentel 
et al., 2017), DESeq2 (Love et al., 2014) and EdgeR (Robin-
son et al., 2011), it is better able to deal with complex experi-
mental designs and provides more robust transcript-level 
predictions without reducing statistical stringency (Smyth et 
al. 2013).  Additionally, only Limma and EdgeR allow for inte-
grated analyses at both the gene (DES) and transcript-level 
(i.e., DAS, DET and DTU), and for the latter EdgeR is known 
to return far fewer significant results compared to Limma.

To identify changes in gene regulation occurring at sea-
sonal transitions the following four contrast groups were se-
lected: winter versus spring, spring versus summer, summer 
versus autumn, and autumn versus winter. In each pairwise 
contrast group differentially expressed genes (DEGs) and 
transcripts (DETs) were those with an adjusted Benjamini-
Hochberg (BH) t-test p value < 0.01 and absolute log2 fold-
change (L2FC) > 1.  To identify DAS genes, the L2FC of 
each transcript belonging to a gene was compared to the 
L2FC for the given gene (i.e., the weighted average of the 
L2FC of all its transcript isoforms), and all p values were 
summarised to a single gene-level p value using the F-test 
method.  DAS genes were considered statistically significant 
when t-test BH-adjusted p < 0.05 and ΔPS (defined as the 
change in average transcript usage ratios across contrast 
conditions) > 0.1, where a greater ΔPS is indicative of in-
creased AS events.  For DTU testing, the L2FC of each gene 
transcript isoform was compared against the weighted aver-
age L2FC for all  the remaining transcript isoforms, and a 
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DTU transcript was considered statistically significant when 
both L2FC > 1 and t-test BH adjusted p < 0.5.

DE and DAS gene IDs were uploaded to the functional 
gene annotation website David 6.8 (Dennis et al., 2003) 
for gene ontology enrichment (GO) analysis.  Enriched GO 

terms categorised as biological process, cellular compo-
nent, or molecular function were considered significant be-
low a false discovery rate (FDR)-adjusted p value threshold 
of 0.05 for DGEs or BH adjusted p of 0.05 for DAS genes.

Figure 1. Flowchart showing the total number of (A) differentially expressed (DE), DE and differentially alternatively spliced (DAS), and 
DAS-only genes and (B) DE, DE and differential transcript usage (DTU), and DTU-only transcripts, each presented with volcano plots to 
visualise the distribution, statistical significance and L2FC or ΔPS of genes or transcripts.

Figure 1A(i).

Figure 1A(ii).

Figure 1A(iii).

Figure 1B(i).

Figure 1B(ii).

Figure 1B(iii).
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RESULTS
After filtering, 25,292 transcripts encoded by 17,989 genes 
of the total 82,190 transcripts and 34,212 genes in AtRTDv2-
QUASI showed significant levels of expression.  A total of 
5,571 DEGs were identified, 399 of which were also DAS 
(DE + DAS) genes.  Of the total 12,418 non-DE genes, 614 
were DAS (DAS only) genes, meaning that there were 1,013 
DAS genes overall (figure 1A).  Furthermore, a total of 4,483 
DETs were identified, 878 of which were also DTU (DE and 
DTU) transcripts.  Of the 20,809 non-DE transcripts, 945 
were DTU (DTU only) transcripts, totalling 1,823 DTU tran-
scripts overall (figure 1B).

The autumn versus winter contrast group showed the 
greatest change in gene regulation at both the transcript- 
and gene-level.  There were 3,272 DEGs between autumn 
and winter, 1,279 of which were significantly upregulated 
and 1,993 of which were downregulated. These DEGs were 
enriched for biological process GO categories related to 
general and hormonal responses to abiotic stressors and 
the regulation of circadian rhythms, cellular components of 
the chloroplast and molecular functions related to transport-
er and oxidoreductase activity (figure 2A).  There were 481 
DAS genes and 2,509 DETs in winter relative to autumn.  
1,448 of the DETs were upregulated and 1,061 were down-
regulated, and 848 transcripts exhibited significant DTU.

Winter versus spring was the contrast group with the 
second greatest changes in gene regulation. There were 
2,935 DEGs in spring compared to winter, 1,636 of which 
were upregulated and 1,299 of which were downregulated. 
These DEGs were enriched for biological processes related 
to general and hormonal responses to abiotic (e.g., salt, cold 
and desiccation) stressors, photosynthesis and responses 
to light, and circadian activity, as well as cellular components 
of the chloroplast and molecular functions associated with 
chlorophyll- and RNA-binding (figure 2B). 275 genes were 
DAS in spring relative to winter and there were 2,209 DETs, 
1,116 being upregulated, 1,093 being downregulated, and a 
further 467 DTU transcripts.

There were significantly less changes in gene regulation 
in the spring versus summer and summer versus autumn 
contrast groups.  There were 1,537 DEGs in summer rela-
tive to spring, 579 of which were upregulated and 958 were 
downregulated.  These DEGs were enriched for biological 
processes associated with immune activity and responses 
to various (heat, cold, desiccation and high-light intensity) 
abiotic stressors, and cellular components of the chloroplast 
(figure 2C).  There were 320 DAS genes and 1,079 DETs in 
summer compared to spring, 468 of which were upregulated 
and 611 which were downregulated, and a total of 554 DTU 
transcripts.

These numbers were similar but slightly reduced in au-
tumn compared to summer, where there were 1,005 DEGs, 
744 being upregulated and 261 being downregulated.  The 

enriched biological process GO terms were also similar to 
spring versus summer, being enriched for biological pro-
cesses related to general immune and heat, cold, light in-
tensity and desiccation responses, and cellular components 
of the chloroplast, ribosome and cell wall (figure 2D).  261 
genes were DAS and 755 transcripts were DE in autumn rel-
ative summer, 500 being upregulated, 255 downregulated, 
and a further 474 were DTU transcripts. 

Figure 2A.

Figure 2B.

Figure 2C.
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The reduced number of DAS genes compared to DEGs 
required GO enrichment analysis to be run on the union set 
of all DAS genes, rather than at individual seasonal transi-
tions.  The most significantly enriched biological process for 
DAS genes across all seasons was the response to cadmi-
um, followed by genes involved in chloroplast organisation 
and responses to cold- and oxidative-stress (figure 2E).  

Results of total DEG and DET numbers and their fold-
change directions for each contrast group are presented in 
figures 2F - 2G, and heatmaps showing clustering of DEGs, 
DE+DAS genes, and DE+DTU transcripts for each season 
are shown in figures 3A - 3C, respectively.  The 10 most 
significant DEGs, DAS, DETs and DTU results for each pair-
wise test and their BH-adjusted p value and L2FC are given 
in table 1. 

To further explore seasonal regulation of gene expres-
sion, a number of differentially regulated genes encoding 
proteins with functions relating to post-translational protein 
modifications (methyltransferases, acetyltransferases and 
deacetyltransferases), protein-DNA interactions (methyl-
CpG-binding domains), nucleosome structure (i.e., histone 
core proteins) and core circadian clock genes were identi-
fied and explored.  Details of these genes are presented in 
table 2.  The weekly TPM of a select number of these genes 
are plotted across the three consecutive study years (figure 
4) and are discussed below.

DISCUSSION
The objective of this work was to increase the resolution of 
the seasonal leaf transcriptome dynamics recently uncov-
ered in A. halleri by Nagano et al. (2019) by reanalysing data 
from their seasonal experiment to include changes in regu-
lation occurring at the transcript-level. Identifying transcript-
level changes in gene regulation at seasonal transitions ef-
fectively serves to capture novel ‘signatures’ of adaptation 
to each emerging season that can inform future single-gene 

Figure 2D.

Figure 2E.

Figure 2F.

Figure 2G.

Figure 2. Bar charts of significantly enriched gene ontology (GO) 
categories grouped by biological process (BP), cellular component 
(CC) and molecular function (MF) and their associated (-log10) 
FDR values for differentially expressed (DE) genes across (A) Au-
tumn-Winter (B) Winter-Spring (C) Summer-Spring and (D) Spring-
Summer, as well as for (E) differentially alternatively spliced (DAS) 
genes across all seasons. Figures (F) and (G) show the respective 
number and direction of regulation of differentially expressed genes 
(DEGs) and transcripts (DETs) across all four pairwise seasonal-
comparisons
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or system-level research and help to provide a more holistic 
perspective of plant environmental physiology.  Here, such 
signatures of adaptation therefore concerned not only DGE 
but also DTE, DAS and DTU, all of which were significantly 
increased transitioning in and out of winter relative to transi-
tioning in and out of summer (figures 2F to 2G and figure 3).  
Of particular note is that most DAS genes (614/1,013) were 

not also DE, highlighting the seasonal import of DAS in its 
own right, not only as an aside to DGE.

Whilst seasonal DEGs were largely enriched for bio-
logical processes related to various (e.g., cold- and heat-
associated) stressors and control of circadian rhythms, 
DAS genes, besides also exhibiting some enrichment for 
cold- and heat- (i.e.. oxidative stress) responsive processes, 

Figure 3A. Figure 3B.
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showed a great enrichment for chloroplast-related genes 
and organisation, with molecular functions additionally 
linked to protein-binding, GTPase and mRNA-binding activi-
ties (figure 2E). In addition to the myriad ways chloroplasts 
are known to mediate organismal energy homeostasis in 
changing environments (Demmig-Adams et al., 2014), that 

chloroplast-related genes and processes are so enriched in 
the seasonally DAS gene-set is particularly interesting due 
to the now elucidated role of light-induced regulation of DAS 
by A. thaliana chloroplasts in laboratory studies (Petrillo et 
al., 2014; Hertz et al., 2019), particularly because in these 
studies light-inducible DAS genes were enriched with func-
tions relating to RNA-binding and processing, another en-
riched seasonally DAS GO term here (figure 2E). This may 
suggest the chloroplast as a ‘hub’ for the regulation of A. 
halleri seasonal DAS in nature, and is consistent with the 
possibility that, at least in the leaves, seasonal DAS may 
correlate more strongly with fluctuations in light than of tem-
perature. Whilst this would be a significant finding in that it 
would indicate seasonal regulation of DE and DAS by two 
separate environmental stimuli, further work would still be 
needed to clarify if it is seasonally DAS genes per se that 
are light-responsive, or only some smaller proportion. One 
potential method to test this would be that employed by Na-
gano et al. (2019) in their initial study.  Namely, to artificially 
manipulate the period of both light-dark cycles and tempera-
ture fluctuations across several months and correlate their 
effect on transcriptome dynamics, but including DAS, not 
only DGE.  Whilst this reanalysis had been planned for the 
present work, it was not completed due to time constraints.

The other, and indeed most enriched GO term for 
seasonally DAS genes was response to cadmium (Cd), a 
widespread and polluting heavy metal released into the en-
vironment by human activities like agriculture, mining, and 
industry. This result appears anomalous until it is noted that 
the Omoide-gawa River in Hyogo, where the plants of this 
study were situated, belongs to the Ichi river basin, which, 
besides being significantly contaminated with Cd released 
in part by a nearby mine (Asami et al., 1983) and a source 
of Cd-associated human “tai-itai” disease (Nogawa et al., 
2006), is adjoined to the Jinzu river basin, the single most 
Cd polluted area in Japan (Aoshima and Horiguchi, 2019). 
However, why seasonally DAS genes are so functionally en-
riched for responding to Cd yet this same GO term is not 
enriched at any seasonal transition within the DEGs is un-
clear, and is not aided by the lack of study into the effects 
of Cd on plant DAS, highlighting at once both the value and 
need for regularly integrating transcript-level analyses into 
transcriptomic projects.

Several protein-coding genes with known or putative 
regulatory functions were also investigated as part of this 
study (table 2). This included genes encoding enzymes 
that mediate post-translational protein modifications such 
as methylation, acetylation and deacetylation, as well as 
CpG-domain-containing proteins, histone proteins and core 
clock proteins. Histone methyltransferase and acetylase/
deacetylase-encoding genes were of particular interest due 
to their widespread role in the epigenetic regulation of gene 
expression and potential for widespread seasonal DAS. 
Whilst most methyltransferase-encoding genes were found 

Figure 3. Hierarchically clustered (n=10) heatmaps showing the 
relative regulation of all (A) differentially expressed (DE) genes 
(DEGS), (B) DE and differentially alternatively spliced (DAS) 
genes, or (C) DE and differential transcript usage (DTU) transcripts 
across each season.  Distance measurements calculated using the 
euclidean method and hierarchical clustering calculated using the 
Ward.D method.

Figure 3C.
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Table 1. Table presenting the top 10 most significant differentially expressed (DE) and differentially alternatively spliced (DAS) genes and 
DE and differential transcript usage (DTU) transcripts for each of the four studied seasonal transitions, as well as their associated BH-
adjusted p value and log2FC.

Seasonal Transition

Winter-Spring Spring-Summer Summer-Autumn Autumn-Winter

Test 
Type

Target ID Adjusted p log2FC Target ID Adjusted p log2FC Target ID Adjusted p log2FC Target ID Adjusted p log2FC

DEG ATCG00270 9.42E-230 -2.21 AT1G67090 6.00E-255 1.12 ATCG00270 0 3.16 AT1G29920 1.32E-241 -1.13

DEG AT2G34420 7.92E-216 -1.65 ATCG00270 1.84E-185 -1.5 AT1G67090 2.21E-217 1.4 ATCG00480 5.18E-190 -1.82

DEG AT3G54890 1.24E-214 -1.07 AT1G61520 2.69E-162 -1.91 AT5G48570 7.94E-30 5.89 AT5G10140 3.06E-77 7.17

DEG AT1G44575 2.47E-149 -1.16 AT3G16640 1.33E-37 -1.58 AT5G58770 8.69E-28 5.05 AT5G57380 3.57E-67 -6.52

DEG ATCG00280 1.15E-143 -1.96 ATCG00480 2.85E-33 1.29 AT3G09640 1.32E-21 4.71 AT5G51570 2.11E-64 -6.4

DEG AT5G57380 6.68E-72 6.23 AT5G48570 1.12E-32 -5.72 AT3G46230 1.32E-21 4.49 AT1G04570 5.25E-52 -6.16

DEG AT3G55580 1.40E-69 7.51 AT3G62290 2.37E-32 -1.1 AT4G25200 2.16E-20 5.04 AT3G20810 3.58E-46 -5.32

DEG AT5G51570 4.72E-47 5.14 AT5G10140 3.15E-27 -3.98 AT1G53540 5.30E-18 4.32 AT5G42900 1.49E-43 -5.95

DEG AT1G19640 1.72E-45 -5.56 AT1G73600 7.20E-23 -3.73 AT3G10985 8.43E-18 3.56 AT1G09350 2.07E-40 -6.84

DEG AT1G10960 7.96E-42 -1.65 AT2G28910 2.76E-21 -1.7 AT5G12110 5.43E-16 3.98 AT3G55580 1.65E-37 -6.19

DAS AT1G70410 2.43E-28 -2.22 AT2G38010 3.70E-13 -0.33 AT1G60780 6.68E-12 0.09 AT2G39800 1.94E-27 -5.62

DAS AT3G12490 3.28E-28 1.88 AT1G45249 2.95E-11 -1.95 AT1G45249 2.96E-09 2.19 AT3G12490 2.01E-21 -1.38

DAS AT1G31850 1.32E-26 0.78 AT1G73600 4.11E-11 -3.73 AT1G73600 2.96E-09 2.17 AT5G66400 2.14E-21 -4.47

DAS AT2G39800 2.18E-19 3.86 AT5G11420 4.11E-11 0.76 AT1G79440 5.57E-09 -0.14 AT2G39805 7.30E-20 -0.98

DAS AT2G39330 1.63E-14 -5.15 AT4G17140 1.78E-10 0.45 AT4G17140 2.81E-08 -0.27 AT1G31850 8.33E-20 -1.08

DAS AT2G39805 5.86E-13 1.68 AT1G79150 2.09E-10 0.65 AT1G79280 2.89E-08 -0.37 AT3G16400 1.25E-14 2.04

DAS AT1G73650 1.18E-12 0.17 AT5G42240 2.09E-10 0.44 AT2G43090 1.20E-07 -0.04 AT1G29395 4.06E-14 -2.73

DAS AT4G35090 3.01E-12 -1.79 AT4G15210 2.23E-10 -1.78 AT3G14840 1.93E-07 -0.92 AT1G06680 4.62E-14 1.06

DAS AT3G62830 6.92E-11 1.48 AT3G16830 4.27E-10 -0.07 AT4G01610 2.25E-07 0.64 AT4G31990 2.39E-13 -1.23

DAS AT2G46830 6.86E-10 1.75 AT1G11860 4.88E-10 0.83 AT4G11420 6.27E-07 -0.27 AT2G39330 7.52E-13 5.07

DET AT5G57380.1 1.10E-65 6.06 AT3G16640_s1 2.13E-37 -1.53 AT5G48570_P1 7.04E-22 5 AT5G57380.1 2.27E-65 -6.44

DET AT1G77120_P1 1.43E-48 6.97 AT5G48570_P1 6.15E-25 -5 AT3G46230_P1 1.72E-21 4.44 AT5G51570_P1 3.69E-65 -6.37

DET AT1G19640_P1 5.79E-45 -5.41 AT5G52640.1 6.15E-25 -5.6 AT4G25200_P1 7.04E-21 5.1 AT1G09350_P1 1.80E-47 -6.81

DET AT5G51570_P1 3.33E-44 5.12 AT1G67090_P1 2.43E-21 1.2 AT5G52640.1 7.23E-20 5.46 AT1G77120_P1 1.07E-37 -6.81

DET AT3G03480_P1 6.74E-44 -6.16 AT4G25200_P1 1.51E-20 -4.73 AT1G53540_P1 8.82E-19 4.41 AT3G03480_P1 3.85E-35 5.97

DET AT1G10960_P1 6.77E-38 -1.6 AT4G20370_P1 1.18E-19 2.77 AT5G12020_P1 2.78E-17 4.45 AT5G42900.1 1.54E-32 -5.57

DET AT1G20340_s1 7.05E-35 -1.29 AT3G46230_P1 3.04E-19 -4.05 AT3G10985_P1 5.05E-17 3.61 AT3G04550_P1 2.69E-32 -1.65

DET AT3G59010_P1 2.29E-34 -4.86 AT1G73600.2 4.21E-19 -4.82 AT5G59720_P1 3.66E-15 4.06 AT5G15650_P1 1.99E-31 -1.21

DET AT1G75960_P1 2.71E-34 -4.96 AT1G53540_P1 2.14E-18 -4.17 AT1G23740_P1 8.63E-15 1.19 AT3G43190_P1 2.81E-31 -4.26

DET AT2G05440_JC7 3.14E-34 2.35 AT5G14570.1 3.76E-18 4.04 AT4G04020_P1 8.63E-15 2.41 AT1G75960_P1 1.99E-30 4.95

DTU AT3G12490_P2 1.23E-28 5.13 AT2G38010_P3 4.21E-13 2.8 AT1G60780_c1 7.60E-12 -2.75 AT5G66400.1 7.32E-21 -5.51

DTU AT1G70410_c2 1.84E-28 -5.37 AT2G38010.1 4.21E-13 -2.86 AT1G60780_P1 7.60E-12 2.94 AT5G66400.2 7.32E-21 1.24

DTU AT1G70410_s1 1.84E-28 2.05 AT5G11420_c1 1.56E-11 4.07 AT1G45249_P1 3.36E-09 -1.03 AT3G12490_P2 1.48E-20 -4.51

DTU AT1G31850.1 1.81E-26 -2.44 AT1G45249_P1 2.69E-11 1.22 AT1G45249_P7 3.36E-09 3.31 AT2G39805_P1 1.33E-19 2.7

DTU AT1G31850.3 1.81E-26 5.15 AT1G45249_P7 2.69E-11 -3.24 AT1G73600_c1 3.36E-09 -1.27 AT2G39805_P2 1.33E-19 -3.49

DTU AT1G73650_c1 7.39E-14 2.85 AT1G73600_c1 5.34E-11 0.59 AT1G73600.2 3.36E-09 4.14 AT1G31850.1 1.35E-19 1.71

DTU AT2G39330_JS3 9.74E-14 -5.83 AT1G73600.2 5.34E-11 -4.82 AT1G79280.3 5.63E-09 3.2 AT1G31850.3 1.35E-19 -5.34

DTU AT2G39805_P1 7.99E-13 -1.51 AT4G15210_P1 6.03E-11 -4.97 AT1G79440_JS1 5.63E-09 -3.49 AT2G39800.4 3.40E-18 -5.81

DTU AT2G39805_P2 7.99E-13 3.03 AT1G79150_JS1 3.16E-10 -2.1 AT1G79440_P1 5.63E-09 3.06 AT4G31990_P2 5.17E-14 -4.51

DTU AT4G35090_JC7 8.06E-13 -5.04 AT1G79150_JS2 3.16E-10 2.96 AT3G14840_JC11 2.93E-07 -3.78 AT1G29395_ID1 5.88E-14 1.79

to be only DE, including genes encoding a histone-lysine 
N-methyltransferase (trm28) and four proteins involved in 
the methylation of either transfer-RNAs (At5g66440, trmc1 

and trmca) or microRNAs (c9orf114), nmt3, which encodes 
a phosphoethanolamine N-methyltransferase (PEAMT) was 
DE, DAS, and exhibited four DTU events, all of which were 
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Type Name or Description Gene ID Significant DE Change(s) DAS Gene(s) DTU Change [Isoform]

Methyltransferase NaNMT (nicotinate N-methyltransferase) AT3G53140 Winter-spring (Down)

Spring-Summer (Up)

SPOUT1 (Putative methyltransferase C9orf114) AT5G19300 Winter-Spring (Up)

Autumn-Winter (Down)

tRNA-methyltransferase non-catalytic subunit trm6MTase subunit AT5G66440 Spring-Summer (Down)

Summer-Autumn (Up)

Autumn-Winter (Up)

IGMT1 (Indole glucosinolate O-methyltransferase 1) AT1G21100 Spring-Summer (Down)

Putitative methyltransferase, DUF21 domain-containing protein AT1G47330 Autumn-Winter (Down)

(TRM1C) N2,N2-dimethylguanosine tRNA methyltransferase AT3G56330 Winter-Spring (Up)

(TRM1A) N2,N2-dimethylguanosine tRNA methyltransferase AT3G02320 Autumn-Winter (Down)

NMT3 (phosphoethanolamine N-methyltransferase) AT1G73600 Winter-Spring (Down) Spring-Summer (Down) [C1] Spring-Summer (Up)

Spring-Summer (Down) Summer-Autumn (Up) [C1] Summer-Autumn (Down)

Summer-Autumn (Up) [.2] Spring-Summer (Down)

Autumn-Winter (Up) [.2] Summer-Autumn (Up)

TRM28 (TON Recruiting Motif 28, histone-lysine N-methyltransferase SETD1B-like protein) AT5G03670 Winter-Spring (Up)

Methyl-CpG-binding 
Domain-Containing

DUF707 (trimethylguanosine synthase, protein containing a putative methyl-CpG-binding domain) AT1G08040 Summer-Autumn (Up)

MBD7 (methyl-CPG-binding domain 7) AT5G59800 Winter-Spring (Up) Winter-Spring (Up)

Autumn-Winter (Down)

MBD11 (methyl-CPG-binding domain 11) AT3G15790 Spring-Summer (Down) Autumn-Winter (Up) [P1] Autumn-Winter (Up)

Acetyltransferase RWA2 (O-acetyltransferase family protein) AT3G06550 Autumn-Winter (Up) Winter-Spring (Down) [JS2] Winter-Spring (Up)

Winter-Spring (Down) [P1] Winter-Spring (Down)

RWA3 (O-acetyltransferase family protein) AT2G34410 Winter-Spring (Down)

HAG2 (Histone acetyltransferase type B catalytic subunit) AT5G56740 Winter-Spring (Up)

histone acetyltransferase subunit NuA4-domain protein AT4G14385 Autumn-Winter (Down)

HAC12 (histone acetyltransferase of the CBP family 12) AT1G16710 Autumn-Winter (Up) [JC7] Autumn-Winter (Up)

Winter-Spring (Down) [JC7] Winter-Spring (Down)

[P6] Autumn-Winter (Down)

[P6] Winter-Spring (Up)

HAC1 (Histone acetyltransferase of the CBP family) AT1G79000 Spring-Summer (Down) [P2] Spring-Summer (Down)

Summer-Autumn (Down) [P2] Summer-Autumn (Up)

[P3] Spring-Summer (Up)

[P3] Summer-Autumn (Down)

Histone acetylase-like protein AT2G14825 Winter-Spring (Up)

Autumn-Winter (Down)

KIX9 (Kinase-inducible domain interacting 9 histone acetylase) AT4G32295 Winter-Spring (Up)

Deacetylase HDAS2 (histone deacetylase 2) AT5G26040 Winter-Spring (Down)

Autumn-Winter (Up)

HD1 (Histone deacetylase 1) AT4G38130 Autumn-Winter (Down)

Histone Core Protein HTA6 (Histone 2A protein 6) AT5G59870 Summer-Autumn (Down)

HIS4 (Histone protein 4) AT2G28740 Autumn-Winter (Up)

Circadian Clock (CCA1) Circadian clock associated 1 AT2G46830 Winter-Spring (Up) Winter-Spring (Up) C2] Autumn-Winter (Up)

Autumn-Winter (Down) Autumn-Winter (Down) [C2] Winter-Spring (Down)

[JC2] Autumn-Winter (Down)

[JC2] Spring-Winter (Up)

(LHY1) Late Elongated Hypocotyl 1 AT1G01060 Winter-Spring (Up) Spring-Summer (Up) [ID6] Winter-Spring (Up)

Spring-Summer (Up) Summer-Autumn (Down) [3] Summer-Autumn (Up)

Summer-Autumn (Down) Winter-Spring (Up) [3] Winter-Spring (Down)

Autumn-Winter (Down) [4] Spring-Summer (Up)

Table 2. Table presenting several classes of genes encoding regulatory proteins as well as their significant differential expression (DE), 
differential alternative splicing (DAS), and differential transcript usage (DTU) changes.

associated with entering and leaving summer (figure 4A). 
PEAMTs are crucial to the production of phosphatidylcho-

line (PC), the main non-plastid membrane phospholipid in 
eukaryotes and a central precursor for various lipid-based 
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signalling molecules important to many essential plant cellu-
lar processes and stress responses (e.g., Chen et al., 2018). 
Besides potentially indicating a significant reorganisation of 
the structure of plant signalling networks during summer, 
this finding is seemingly the first time a role for DAS or DTU 
in PC production, an important and highly studied process, 
has been comprehensively reported.

In addition to methyltransferase enzymes, three genes 
encoding proteins containing methyl-CpGbinding domains 
(MBDs) were also explored. Whilst duf707 was only DE, both 
mbd7 and mbd11 were DAS, with mbd11 also having a sig-

nificant DTU event moving from autumn to winter. MBDs are 
the primary ‘reader’ molecules responsible for detecting and 
binding DNA sequences of methylated CpG dinucleotides 
and are therefore crucial to the specificity of DNA-protein 
interactions underlying the epigenetic repression of gene ex-
pression (Du et al., 2015). Their varying DE and DAS (mbd7 
having greater expression and AS in spring and mbd11 in 
winter) is therefore a likely indication of their different roles 
in the upstream repression of different seasonally relevant 
gene networks. Whilst regulation of DAS by CBD proteins 
is well-known (e.g., Young et al., 2005), regulation of CBD 

Figure 4A.

Figure 4B.

Figure 4C.

Figure 4D.
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protein function by DAS has received less attention, but here 
provides a parsimonious explanation as to how some sea-
sonal changes in DGE are likely to be regulated. An interest-
ing future question is what proportion of seasonal DEGs are 
repressed by such upstream DAS of CBD genes.

Interestingly, whilst many acetyltransferase and histone 
acetyltransferase-encoding genes, as well as genes encod-
ing histone proteins and histone deacetylases (figure 4B) 
were found to be DE-only, two histone acetyltransferase-
encoding genes, hac1 and hac12, exhibited extensive sea-
sonal DAS and DTU events without any change in their ex-
pression (figures 4C and 4D). Unlike MBD-encoding genes, 
regulation of histone acetyltransferase function by DAS is 
relatively well documented (e.g., Lois et al., 2007). However, 
whilst the diversification of plant histone acetyltransferase 
proteins by DAS is well studied in the context of evolution-
ary diversification (e.g., Pandey et al., 2002), its role in sea-
sonal adaptation is less understood, but likely to yield novel 
mechanistic insights into plant environmental physiology.	

We also explored two Arabidopsis clock genes, lhy1 and 
cca1 (figures 4E and 4F). Both of these genes encode myb 
transcription factors involved in a negative feedback loop 
closely associated with the Arabidopsis circadian oscilla-
tor system (Carré and Kim, 2002), which times the expres-
sion of one third of the genes in the Arabidopsis genome 
(Covington et al., 2008). Due to the central role of the Arabi-
dopsis clock system in timing many seasonal physiological 
traits like germination and flowering, lhy1 and cca1 are both 
intensely studied and known to undergo extensive DAS, 

particularly in response to changing temperatures (Filichkin 
and Mockler, 2012; James et al., 2012; Park et al., 2012; 
Capovilla et al., 2015). These findings are reinforced here. 
Besides both being generally downregulated in autumn and 
winter and upregulated in spring and summer, lhy1 and cca1 
together showed the most extensive DAS and DTU events 
of all of the explored regulatory genes, with cca1 even be-
ing in the top 10 overall DAS genes for winter-spring (table 
1). This study therefore provides comprehensive and natu-
ralistic support for temperature dependent AS of lhy1 and 
cca1 as a means for linking Arabidopsis circadian rhythms 
to yearly temperature changes.

The present study provides a detailed characterisation of 
the A. halleri transcriptome in response to natural seasonal 
changes at the gene- and transcript levels that can be used 
and further explored by others researching seasonal plant 
phenotypes and adaptation. It is however important to be 
mindful that to properly understand how the results present-
ed here relate to plant seasonal adaptation, studies utilising 
proteomic, epigenomic and metabolomic methods should 
be employed to elucidate how changes in the transcrip-
tome translate to changes in phenotypes, with the ultimate 
goal to causally link these phenotypes to demonstrations of 
adaptive changes in fitness outcomes. It is also important to 
be aware of the limitations and potential confounders, the 
primary here being the somewhat unusually low gene and 
transcript count numbers, which undoubtedly increase the 
inherent statistical noise in the data and chance of spurious 
results and conclusions. Likely explanations for the gener-

Figure 4E.

Figure 4F.

Figure 4. Weekly transcripts per million (TPM) of (A) the differentially expressed (DE), alternatively spliced (DAS), and transcript usage 
(DTU; DE+DAS+DTU) methyltransferase nmt3 and (B) (DE-only) deacetylase hd1, two (DAS+DTU-only) histone acetylase genes (C) 
hac12 and (D) hac1, and two (DE+DAS+DTU) Arabidopsis circadian clock genes (E) lhy1 and (F) cca1.
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ally very low counts (and the especially low ≈0 counts of 
26 excluded samples) are a combination of a high propor-
tion of small library sizes, generally low (63±10%) mapping 
rates, and some degree of inaccurate strand information. 
Besides the reasons already discussed (§2.2), a further ex-
planation for these observed low-counts data arises from 
the fact that an A. thaliana reference was used to study the 
A. halleri transcriptome.  Although not the first time this had 
been done, and somewhat unavoidable due to the lack of 
publicly available A. halleri reference transcriptome, this out-
come potentially indicates greater genomic differences be-
tween these two species than is often assumed, and serves 
as a reminder of the increasing value of dedicated efforts 
to build accessible and accurate bioinformatics resources. 
Moreover, it underlines the need for diversifying the base of 
model organisms within biology, as understanding biological 
phenomena ultimately demands accounting for their natural 
biodiversity.
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